Multi-agent orchestration system for coordinating AI-powered development workflows.
R2-D2 (Rapid 2-way Deployment of 2 DevOps) is a sophisticated multi-agent orchestration system that coordinates 4 specialized AI agents working in parallel on complex software development projects. Named after the beloved Star Wars droid, R2-D2 acts as the "Jedi Master" orchestrator, managing agent workstreams, tracking progress, and ensuring successful mission completion.
- π€ 4-Agent Parallel Workstream - Coordinate multiple AI agents simultaneously
- π Real-Time TUI Dashboard - Monitor progress with a beautiful terminal dashboard
- π 162-Task Tracking System - Comprehensive task management and progress tracking
- π§ CodeRabbit CLI Integration - Automated code quality reviews
- π SOLID Principles Enforcement - Maintain high code quality standards
- π Tech Knowledge Base - Indexed documentation for 31 technologies
- π― Five-Layer Architecture - Structured approach to complex implementations
# Clone the repository
git clone https://github.com/hanax-ai/Agents---Tools.git
cd Agents---Tools
# Install R2-D2 (requires sudo for global installation)
./scripts/core/install.sh
# Verify installation
r2d2 help# Check system status
r2d2 status
# Start the dashboard
r2d2 start
# View the dashboard
r2d2 dashboardR2-D2 coordinates 4 specialized agents, each with unique responsibilities:
| Agent | Codename | Role | Tasks | Specialization |
|---|---|---|---|---|
| Agent 1 | π§ββοΈ Obi-Wan Kenobi | Backend REST API Developer | 33 | Ansible, FastAPI, PostgreSQL |
| Agent 2 | π‘οΈ Luke Skywalker | Frontend Foundation Developer | 43 | React, TypeScript, TDD |
| Agent 3 | π Princess Leia | Pages Integration Developer | 51 | UI Components, State Management |
| Agent 4 | π§ Yoda | Testing & Validation Specialist | 35 | E2E Testing, Code Review |
Total Tasks: 162 tasks, ~107 estimated hours
R2-D2 implements a Five-Layer Architecture for complex software systems:
graph TB
subgraph Layer1["π¨ LAYER 1: FRONTEND"]
UI1["Open WebUI<br/>:8080"]
UI2["shield-ag-ui<br/>(Planned)"]
UI3["shield-dashboard<br/>(Planned)"]
end
subgraph Layer2["πͺ LAYER 2: API GATEWAY"]
Gateway["LiteLLM Gateway<br/>:4000/v1/chat/completions<br/><br/>β’ MCP Tool Registry<br/>β’ RBAC Guardrails<br/>β’ Rate Limiting"]
end
subgraph Layer3["π§ LAYER 3: TOOL EXECUTION"]
MCP["FastMCP Server<br/>:8081/sse<br/><br/>7 Tools:<br/>β’ crawl_web<br/>β’ ingest_doc<br/>β’ qdrant_find<br/>β’ qdrant_store<br/>β’ lightrag_query<br/>β’ get_job_status<br/>β’ health_check"]
end
subgraph Layer4["π§ LAYER 4: ORCHESTRATION"]
Orch["Orchestrator<br/>:8000<br/><br/>β’ LightRAG Engine<br/>β’ Worker Pool<br/>β’ Redis Streams<br/>β’ LangGraph<br/>β’ Pydantic AI"]
end
subgraph Layer5["πΎ LAYER 5: DATA"]
Qdrant["Qdrant<br/>Vector DB<br/>:6333"]
Postgres["PostgreSQL<br/>Knowledge Graph<br/>:5432"]
Redis["Redis Streams<br/>Event Bus<br/>:6379"]
Ollama1["Ollama Embeddings<br/>:11434"]
Ollama2["Ollama LLMs<br/>:11434"]
end
UI1 & UI2 & UI3 -->|"HTTP + SSE"| Gateway
Gateway -->|"MCP Protocol"| MCP
MCP -->|"HTTP API"| Orch
Orch --> Qdrant & Postgres & Redis & Ollama1 & Ollama2
classDef frontend fill:#e1f5ff,stroke:#01579b,stroke-width:2px
classDef gateway fill:#fff3e0,stroke:#e65100,stroke-width:2px
classDef tools fill:#f3e5f5,stroke:#4a148c,stroke-width:2px
classDef orchestration fill:#e8f5e9,stroke:#1b5e20,stroke-width:2px
classDef data fill:#fce4ec,stroke:#880e4f,stroke-width:2px
class UI1,UI2,UI3 frontend
class Gateway gateway
class MCP tools
class Orch orchestration
class Qdrant,Postgres,Redis,Ollama1,Ollama2 data
- Frontend Layer - User interfaces (Open WebUI, AG-UI, Dashboard)
- API Gateway Layer - LiteLLM with MCP tool registry and RBAC guardrails
- Tool Execution Layer - FastMCP server with 7 production-ready tools
- Orchestration Layer - FastAPI orchestrator with LightRAG and worker pools
- Data Layer - PostgreSQL, Qdrant, Redis, and Ollama LLM nodes
For complete architecture details including data flows, circuit breaker patterns, and system topology, see docs/architecture/five-layer-design.md.
r2d2 start # Start dashboard in background
r2d2 stop # Stop dashboard
r2d2 restart # Restart dashboard
r2d2 status # Show system status
r2d2 dashboard # Open dashboard viewer (foreground)
r2d2 monitor # Show monitoring setup guideOpen separate terminals for each agent:
# Terminal 1: Main Dashboard
r2d2 dashboard
# Terminal 2-5: Individual Agents
r2d2-obi # Monitor Obi-Wan (Backend)
r2d2-luke # Monitor Luke (Frontend)
r2d2-leia # Monitor Leia (Pages)
r2d2-yoda # Monitor Yoda (Testing)# View all progress
r2d2-progress
# View incomplete tasks
r2d2-tasks
# View agent logs
r2d2-logs- Installation Guide - Complete installation instructions
- Quick Reference - Command reference
- Agent Onboarding - Comprehensive agent briefing
- Monitoring Guide - Real-time monitoring setup
- Architecture Overview - System design
docs/
βββ getting-started/ # Installation & quick start guides
βββ agent-guides/ # Agent-specific documentation
βββ operations/ # Operational guides & monitoring
βββ reference/ # Command & API reference
βββ architecture/ # Architecture & design documents
βββ contributing/ # Contribution guidelines
R2-D2 excels at coordinating complex software development projects:
- Multi-Agent Development - Coordinate 2-10 AI agents on parallel workstreams
- Five-Layer Architecture - Implement complete frontend-to-data-layer systems
- Test-Driven Development - Enforce TDD with contract-first approach
- Code Quality Assurance - Automated reviews with CodeRabbit CLI
- Real-Time Monitoring - Track progress across all agents simultaneously
- Python 3.11+ - Dashboard and tracking scripts
- Bash - Orchestration and monitoring scripts
- Rich - Terminal UI library
- Git - Version control and collaboration
- Backend: FastAPI, Ansible, PostgreSQL, Redis, Ollama
- Frontend: React, Next.js, TypeScript, Zod, Zustand
- AI/ML: LiteLLM, LightRAG, LangGraph, Pydantic AI
- Data: Qdrant, Prisma, PostgreSQL, Redis
- Tools: Docker, Nginx, CodeRabbit, Crawl4AI, Docling
See docs/reference/tech-kb-index.md for complete index.
We welcome contributions! Please see our Contributing Guidelines for details.
# Clone and install in development mode
git clone https://github.com/hanax-ai/Agents---Tools.git
cd Agents---Tools
./scripts/setup/install.sh --dev
# Run tests
python -m pytest tests/
# Lint scripts
shellcheck scripts/**/*.sh- SOLID Principles - All code must follow SOLID OOP principles
- Test-Driven Development - Write tests before implementation
- MCP Pattern - Write operations via Gateway β MCP β Orchestrator
- Code Review - All PRs reviewed by CodeRabbit + humans
- Current Version: 1.0.0
- Status: Production Ready β
- Tasks Tracked: 162 tasks
- Agents Active: 4 agents
- Demo Checkpoints: 3 milestones
- Demo 1 (Day 2): Foundation - API infrastructure + MCP validation
- Demo 2 (Day 6): Integration - All pages with real data
- Demo 3 (Day 7): Production - Tests passing, deployment validated
R2-D2 orchestrates multiple related projects:
- hx-citadel-ansible - Backend infrastructure (Ansible)
- citadel-shield-ui - Frontend React application
- ag-ui-protocol - AG-UI protocol library
These projects are coordinated via the GitHub Project.
This project is licensed under the MIT License - see the LICENSE file for details.
- Anthropic - Claude AI for agent coordination
- OpenAI - GPT models for agent capabilities
- CodeRabbit - Automated code review
- Star Wars - Inspiration for agent codenames
- Documentation: hana-x.ai
- Issues: GitHub Issues
- Email: [email protected]
π€ R2-D2 standing by. May the Force be with you!
Built with β€οΈ by the HANA-X AI Team