forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lora.py
143 lines (124 loc) · 5.75 KB
/
lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
from .._common import default_net
from ..functional import Tensor, lora_plugin
from ..module import Module
class LoraRuntimeParams(object):
def __init__(
self,
lora_ranks: List[Tensor] = None,
lora_weights_pointers: List[Tensor] = None,
host_request_types: Tensor = None,
host_context_lengths: Tensor = None,
max_context_length: Tensor = None,
max_encoder_context_length: Tensor = None,
host_encoder_input_lengths: Tensor = None,
weight_index: int = 0,
):
self.lora_ranks = lora_ranks
self.lora_weights_pointers = lora_weights_pointers
self.host_request_types = host_request_types
self.host_context_lengths = host_context_lengths
self.max_context_length = max_context_length
self.max_encoder_context_length = max_encoder_context_length
self.host_encoder_input_lengths = host_encoder_input_lengths
self.weight_index = weight_index
class Lora(Module):
def __init__(self,
in_hidden_size: int = 0,
out_hidden_sizes: List[int] = [0],
max_low_rank: int = 0) -> None:
super().__init__()
self.in_hidden_size = in_hidden_size
self.out_hidden_sizes = out_hidden_sizes
self.max_low_rank = max_low_rank
def forward(self,
x,
lora_runtime_params: LoraRuntimeParams = None,
is_cross_attention: bool = False):
if default_net().plugin_config.lora_plugin:
result = lora_plugin(
x,
in_hidden_size=self.in_hidden_size,
out_hidden_sizes=self.out_hidden_sizes,
host_request_types=lora_runtime_params.host_request_types,
transb=True,
# For cross attention, host_encoder_input_lengths should be used instead of host_context_lengths
host_context_lengths=lora_runtime_params.host_context_lengths
if not is_cross_attention else
lora_runtime_params.host_encoder_input_lengths,
# For cross attention, max_encoder_context_length should be used instead of max_context_length
max_context_length=lora_runtime_params.max_context_length
if not is_cross_attention else
lora_runtime_params.max_encoder_context_length,
max_low_rank=self.max_low_rank,
lora_ranks=lora_runtime_params.lora_ranks,
lora_weights_pointers=lora_runtime_params.lora_weights_pointers,
weight_index=lora_runtime_params.weight_index,
)
else:
assert False, "Not support lora without plugin"
return result
class LoraParams(object):
def __init__(
self,
lora_ranks=None, # : List[dict[Tensor]]
lora_weights_pointers=None, # : List[dict[Tensor]]
host_context_lengths: Tensor = None,
max_context_length: Tensor = None,
max_encoder_context_length: Tensor = None, # For cross attention
host_request_types: Tensor = None,
host_encoder_input_lengths: Tensor = None, # For cross attention
weight_index: int = 0,
):
self.lora_ranks = lora_ranks
self.lora_weights_pointers = lora_weights_pointers
self.host_context_lengths = host_context_lengths
self.max_context_length = max_context_length
self.max_encoder_context_length = max_encoder_context_length
self.host_request_types = host_request_types
self.host_encoder_input_lengths = host_encoder_input_lengths
self.weight_index = weight_index
def get_layer_params(self, layer_idx: int):
return LoraParams(
lora_ranks=[self.lora_ranks[layer_idx]],
lora_weights_pointers=[self.lora_weights_pointers[layer_idx]],
host_context_lengths=self.host_context_lengths,
max_context_length=self.max_context_length,
max_encoder_context_length=self.max_encoder_context_length,
host_request_types=self.host_request_types,
host_encoder_input_lengths=self.host_encoder_input_lengths,
weight_index=self.weight_index,
)
def get_runtime_params(self, layer_idx: int, lora_module: str):
if f"{lora_module}_lora_ranks" in self.lora_ranks[layer_idx]:
return LoraRuntimeParams(
lora_ranks=[
self.lora_ranks[layer_idx][f"{lora_module}_lora_ranks"]
],
lora_weights_pointers=[
self.lora_weights_pointers[layer_idx]
[f"{lora_module}_lora_weights_pointers"]
],
host_context_lengths=self.host_context_lengths,
max_context_length=self.max_context_length,
max_encoder_context_length=self.max_encoder_context_length,
host_request_types=self.host_request_types,
host_encoder_input_lengths=self.host_encoder_input_lengths,
weight_index=self.weight_index,
)
else:
return None