-
Notifications
You must be signed in to change notification settings - Fork 0
/
convo_modeling_lightning_add_sen_kfold.py
481 lines (424 loc) · 19.7 KB
/
convo_modeling_lightning_add_sen_kfold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
import transformers
from transformers import BertModel, BertTokenizer, AdamW, get_linear_schedule_with_warmup
import torch
import numpy as np
import pandas as pd
import csv
from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report
from collections import defaultdict
from sklearn.metrics import r2_score
from scipy.stats import kendalltau
from scipy.stats import spearmanr
from scipy.stats import pearsonr
from torch import nn, optim
from torch.utils.data import Dataset, DataLoader, RandomSampler
import torch.nn.functional as F
import argparse
import pytorch_lightning as pl
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
import shutil
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)
class AbuseDataset(Dataset):
def __init__(self, reviews, targets, c_list, c_num, tokenizer, max_len, context_window, ids):
self.reviews = reviews
self.targets = targets
self.c_list = c_list
self.c_num = c_num
self.tokenizer = tokenizer
self.max_len = max_len
self.context_window = context_window
self.ids = ids
def __len__(self):
return len(self.reviews)
def __getitem__(self, item):
c=['[PAD]' for i in range(self.context_window)]
review = str(self.reviews[item])
target = self.targets[item]
c_num = self.c_num[item]
c_list = self.c_list[item]
idx = self.ids[item]
n = c_num if c_num<self.context_window else self.context_window
for i in range(n):
c[i] = c_list[i]
encoding = self.tokenizer.encode_plus(
review,
add_special_tokens=True,
truncation=True,
max_length=self.max_len,
return_token_type_ids=False,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt',
)
context_input_ids = []
context_attention_mask = []
for i in range(0,self.context_window):
encoding_context = self.tokenizer.encode_plus(
c[i],
add_special_tokens=True,
truncation=True,
max_length=self.max_len,
return_token_type_ids=False,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt')
context_input_ids.append(encoding_context['input_ids'].flatten())
context_attention_mask.append(encoding_context['attention_mask'].flatten())
return {
'review_text': review,
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'targets': torch.tensor(target, dtype=torch.float),
'context_input_ids': torch.stack(context_input_ids),
'context_attention_masks': torch.stack(context_attention_mask),
'context_num': c_num,
'ids': idx
}
class GeneralAttention(nn.Module):
def __init__(self, hidden_size, context_window, sparsemax=False):
super().__init__()
self.hidden_size = hidden_size
self.linear = nn.Linear(self.hidden_size, 1)
self.context_window = context_window
# self.normaliser = masked_softmax
self.weights = []
def masked_softmax(self, vector, mask):
while mask.dim() < vector.dim():
mask = mask.unsqueeze(1)
# To limit numerical errors from large vector elements outside the mask, we zero these out.
result = torch.nn.functional.softmax(vector * mask, dim=-1)
result = result * mask
result = result / (
result.sum(dim=-1, keepdim=True) + 1e-4
)
return result
def forward(self, context, masks, batch_size, device):
context = torch.cat(context, dim=1)
context = context.reshape(-1,self.context_window, self.hidden_size)
weights = self.linear(context).squeeze(-1)
weights = weights.to(device)
masks = masks.to(device)
weights = self.masked_softmax(weights, masks)
context = torch.bmm(weights.unsqueeze(dim=1), context)
return context, weights
class MSLELoss(nn.Module):
def __init__(self):
super().__init__()
self.mse = nn.MSELoss(reduction = 'sum')
def forward(self, pred, actual):
return self.mse(torch.log(pred + 1.00005), torch.log(actual + 1.00005))
class Abuse_lightning(LightningModule):
def __init__(self, df_train,df_val,df_test, config):
super(Abuse_lightning, self).__init__()
self.save_hyperparameters()
self.df_train = df_train
self.df_val = df_val
self.df_test = df_test
self.config = config
self.n_classes = config['abuse_classes']
self.max_len = config['max_len']
self.batch_size = config['batch_size']
self.max_epochs = config['num_epochs']
self.PRE_TRAINED_MODEL_NAME = config['PRE_TRAINED_MODEL_NAME']
self.bert = BertModel.from_pretrained(self.PRE_TRAINED_MODEL_NAME)
bert_dropout = config['bert_dropout']
for layer in self.bert.encoder.layer:
layer.attention.self.dropout = torch.nn.Dropout(self.bert.config.attention_probs_dropout_prob + bert_dropout)
layer.output.dropout = torch.nn.Dropout(self.bert.config.hidden_dropout_prob + bert_dropout)
self.drop = nn.Dropout(p = config['fc_dropout'])
self.out = nn.Linear(self.bert.config.hidden_size, self.n_classes)
self.loss = nn.MSELoss().to(self.device)
self.attention = GeneralAttention(self.bert.config.hidden_size, self.config['context_window'])
self.attention = self.attention.to(self.device)
################################ DATA PREPARATION ############################################
def __retrieve_dataset(self, train=True, val=True, test=True):
""" Retrieves task specific dataset """
self.tokenizer = BertTokenizer.from_pretrained(self.PRE_TRAINED_MODEL_NAME)
if train:
num = self.df_train.context_num.astype(int)
context_list = []
for i, val in enumerate(num):
context = []
for j in range(val):
context.append(self.df_train["context"+str(j+1)][i])
context_list.append(context)
ds = AbuseDataset(reviews=self.df_train.comment.to_numpy(), targets=self.df_train.Score.to_numpy(), c_list = context_list,
c_num = self.df_train.context_num.to_numpy(), tokenizer=self.tokenizer,max_len=self.max_len, context_window = self.config['context_window'], ids = self.df_train.idx)
# if val:
# num = self.df_val.context_num.astype(int)
# context_list = []
# for i, val in enumerate(num):
# context = []
# for j in range(val):
# context.append(self.df_val["context"+str(j+1)][i])
# context_list.append(context)
# ds = AbuseDataset(reviews=self.df_val.comment.to_numpy(), targets=self.df_val.Score.to_numpy(), c_list = context_list,
# c_num = self.df_val.context_num.to_numpy(), tokenizer=self.tokenizer,max_len=self.max_len, context_window = self.config['context_window'])
if test:
num = self.df_test.context_num.astype(int)
context_list = []
for i, val in enumerate(num):
context = []
for j in range(val):
context.append(self.df_test["context"+str(j+1)][i])
context_list.append(context)
ds = AbuseDataset(reviews=self.df_test.comment.to_numpy(), targets=self.df_test.Score.to_numpy(), c_list = context_list,
c_num = self.df_test.context_num.to_numpy(), tokenizer=self.tokenizer,max_len=self.max_len, context_window = self.config['context_window'], ids = self.df_test.idx)
return ds
@pl.data_loader
def train_dataloader(self):
self._train_dataset = self.__retrieve_dataset(val=False, test=False)
return DataLoader(dataset=self._train_dataset, batch_size=self.batch_size,num_workers=4, shuffle = True)
# @pl.data_loader
# def val_dataloader(self):
# self._dev_dataset = self.__retrieve_dataset(train=False, test=False)
# return DataLoader(dataset=self._dev_dataset, batch_size=self.batch_size,num_workers=4)
@pl.data_loader
def test_dataloader(self):
self._test_dataset = self.__retrieve_dataset(train=False, val=False)
return DataLoader(dataset=self._test_dataset, batch_size=self.batch_size,num_workers=4)
################################ MODEL AND TRAINING PREPARATION ############################################
def forward(self, input_ids, attention_mask):
outputs = self.bert(
input_ids=input_ids,
attention_mask=attention_mask
)
pooled_output = outputs[0].mean(dim = 1)
output = self.drop(pooled_output)
return output
def training_step(self, d, batch_idx):
if(self.current_epoch > 5):
for param in self.bert.encoder.parameters():
param.requires_grad = False
input_ids = d["input_ids"].to(self.device)
attention_mask = d["attention_mask"].to(self.device)
targets = d["targets"].to(self.device)
context_input_ids = d["context_input_ids"].to(self.device)
context_attention_masks = d["context_attention_masks"].to(self.device)
context_num = d['context_num'].to(self.device)
# print(input_ids.shape)
outputs = self.forward(input_ids=input_ids, attention_mask=attention_mask)
out_encoding = []
for i in range(len(context_input_ids)):
c = self.forward(input_ids=context_input_ids[i].to(self.device),attention_mask=context_attention_masks[i].to(self.device))
out_encoding.append(c)
mask = torch.zeros([input_ids.shape[0],self.config['context_window']])
for i in range(len(context_num)):
arr = np.zeros(self.config['context_window'])
arr[:context_num[i]] = 1
mask[i] = torch.tensor(arr)
mask = mask.to(self.device)
weighted, _ = self.attention.forward(out_encoding, mask, self.batch_size, self.device)
# main_context = torch.add((outputs,weighted.squeeze(dim=1)),dim=1)
main_context = outputs.add(weighted.squeeze(dim=1))
val = self.out(main_context)
preds = torch.tanh(val)
loss = self.loss(preds.squeeze(dim = 1), targets)
p = preds.squeeze(dim=1).to('cpu').detach().numpy()
t = targets.to('cpu').detach().numpy()
loss = loss.type(torch.FloatTensor)
return {'prediction': p, 'target': t, 'loss': loss}
# def validation_step(self, d, batch_idx):
# input_ids = d["input_ids"].to(self.device)
# attention_mask = d["attention_mask"].to(self.device)
# targets = d["targets"].to(self.device)
# context_input_ids = d["context_input_ids"].to(self.device)
# context_attention_masks = d["context_attention_masks"].to(self.device)
# context_num = d['context_num'].to(self.device)
# # print(input_ids.shape)
# outputs = self.forward(input_ids=input_ids, attention_mask=attention_mask)
# # print(outputs)
# out_encoding = []
# for i in range(len(context_input_ids)):
# c = self.forward(input_ids=context_input_ids[i].to(self.device),attention_mask=context_attention_masks[i].to(self.device))
# out_encoding.append(c)
# mask = torch.zeros([input_ids.shape[0],self.config['context_window']])
# for i in range(len(context_num)):
# arr = np.zeros(self.config['context_window'])
# arr[:context_num[i]] = 1
# mask[i] = torch.tensor(arr)
# weighted = self.attention.forward(out_encoding, mask, self.batch_size, self.device)
# # main_context = torch.add((outputs,weighted.squeeze(dim=1)),dim=1)
# main_context = outputs.add(weighted.squeeze(dim=1))
# val = self.out(main_context)
# preds = torch.tanh(val)
# loss = self.loss(preds.squeeze(dim = 1), targets)
# p = preds.squeeze(dim=1).to('cpu').detach().numpy()
# t = targets.to('cpu').detach().numpy()
# loss = loss.type(torch.FloatTensor)
# return {'prediction': p, 'target': t, 'loss': loss}
def test_step(self, d, batch_idx):
input_ids = d["input_ids"].to(self.device)
attention_mask = d["attention_mask"].to(self.device)
targets = d["targets"].to(self.device)
ids = d['ids']
context_input_ids = d["context_input_ids"].to(self.device)
context_attention_masks = d["context_attention_masks"].to(self.device)
context_num = d['context_num'].to(self.device)
outputs = self.forward(input_ids=input_ids, attention_mask=attention_mask)
out_encoding = []
for i in range(len(context_input_ids)):
c = self.forward(input_ids=context_input_ids[i].to(self.device),attention_mask=context_attention_masks[i].to(self.device))
out_encoding.append(c)
mask = torch.zeros([input_ids.shape[0],self.config['context_window']])
for i in range(len(context_num)):
arr = np.zeros(self.config['context_window'])
arr[:context_num[i]] = 1
mask[i] = torch.tensor(arr)
weighted, weights = self.attention.forward(out_encoding, mask, self.batch_size, self.device)
# main_context = torch.add((outputs,weighted.squeeze(dim=1)),dim=1)
main_context = outputs.add(weighted.squeeze(dim=1))
val = self.out(main_context)
preds = torch.tanh(val)
loss = self.loss(preds.squeeze(dim = 1), targets)
p = preds.squeeze(dim=1).to('cpu').detach().numpy()
t = targets.to('cpu').detach().numpy()
loss = loss.type(torch.FloatTensor)
return {'prediction': p, 'target': t, 'loss': loss, 'ids': ids, 'weights': weights}
def configure_optimizers(self):
# para = [{"params":self.bert.parameters(), "lr":self.config['lr'], "weight_decay" : self.config['wd'], "correct_bias":False},
# {"params":self.attention.parameters(), "lr":self.config['lr']*10, "weight_decay" : self.config['wd'], "correct_bias":False},
# {"params":self.out.parameters(), "lr":self.config['lr']*10, "weight_decay" : self.config['wd'], "correct_bias":False}]
optimizer = AdamW(self.parameters(), lr=self.config['lr'], weight_decay= self.config['wd'], correct_bias=False)
total_steps = len(self.train_dataloader()) * self.max_epochs
scheduler = get_linear_schedule_with_warmup(optimizer,num_warmup_steps=0, num_training_steps = total_steps )
# optimizer_att = torch.optim.Adam(self.attention.parameters(),lr=0.001)
return [optimizer], [scheduler]
def training_epoch_end(self, outputs):
# called at the end of the training epoch
# outputs is an array with what you returned in validation_step for each batch
# outputs = [{'loss': batch_0_loss}, {'loss': batch_1_loss}, ..., {'loss': batch_n_loss}]
avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
p = []
for x in outputs:
p.extend(x['prediction'])
t = []
for x in outputs:
t.extend(x['target'])
pear = pearsonr(t,p)
spear = spearmanr(t,p)
tau = kendalltau(t,p)
tensor_pear = torch.tensor(pear[0], device=self.device)
logs = {'train_loss': avg_loss.item(), 'train_pearson':pear[0], 'train_spearman':spear[0], 'train_kendall':tau[0]}
print(" Train Pearson {}.Train Spearman {}.Train Kendall {} Train Loss {}".format(pear[0], spear[0], tau[0], avg_loss))
return {'pearson':tensor_pear, 'spearman':spear[0], 'kendall':tau[0], 'loss': avg_loss, 'log': logs}
# def validation_epoch_end(self, outputs):
# # called at the end of the validation epoch
# # outputs is an array with what you returned in validation_step for each batch
# # outputs = [{'loss': batch_0_loss}, {'loss': batch_1_loss}, ..., {'loss': batch_n_loss}]
# avg_loss = torch.stack([x['loss'] for x in outputs])
# if self.trainer.use_dp or self.trainer.use_ddp2 or trainer.use_ddp:
# avg_loss = torch.mean(avg_loss).to(self.device)
# else:
# avg_loss = avg_loss.mean()
# # p = [x['prediction'] for x in outputs]
# p = []
# for x in outputs:
# p.extend(x['prediction'])
# t = []
# for x in outputs:
# t.extend(x['target'])
# pear = pearsonr(t,p)
# spear = spearmanr(t,p)
# tau = kendalltau(t,p)
# tensor_pear = torch.tensor(pear[0], device=self.device)
# logs = {'val_loss': avg_loss.item(), 'val_pearson':pear[0], 'val_spearman':spear[0], 'val_kendall':tau[0]}
# print(" Val Pearson {}.Val Spearman {}.Val Kendall {} Val Loss {}".format(pear[0], spear[0], tau[0], avg_loss))
# return {'pearson':tensor_pear, 'spearman':spear[0], 'kendall':tau[0], 'loss': avg_loss, 'log': logs}
def test_epoch_end(self, outputs):
# called at the end of the validation epoch
# outputs is an array with what you returned in validation_step for each batch
# outputs = [{'loss': batch_0_loss}, {'loss': batch_1_loss}, ..., {'loss': batch_n_loss}]
avg_loss = torch.stack([x['loss'] for x in outputs]).mean()
p = []
ids = []
w = []
for x in outputs:
p.extend(x['prediction'])
ids.extend(x['ids'])
w.extend(x['weights'])
t = []
for x in outputs:
t.extend(x['target'])
with open('testing_preds_convo_sen.csv', 'a', encoding = 'utf-8') as f:
writer = csv.writer(f)
# writer.writerow(['ID', 'Prediction', 'Target'])
row = []
for i,idx in enumerate(ids):
row.append(idx.item())
row.append(p[i])
row.append(t[i])
row.append(w[i].to('cpu').detach().numpy())
writer.writerow(row)
row = []
f.close()
pear = pearsonr(t,p)
spear = spearmanr(t,p)
tau = kendalltau(t,p)
print("Test hparams: ",self.config['lr'],self.config['fc_dropout'],self.config['bert_dropout'])
print(" Test Pearson {}.Test Spearman {}.Test Kendall {} Test Loss {}".format(pear[0], spear[0], tau[0], avg_loss))
return {'pearson':pear[0], 'spearman':spear[0], 'kendall':tau[0], 'loss': avg_loss}
if __name__ == "__main__":
ctr = 1
parser = argparse.ArgumentParser(description="Enter args")
parser.add_argument('--PRE_TRAINED_MODEL_NAME', default="bert-base-cased", type=str)
parser.add_argument('--batch_size', default=16, type=int)
parser.add_argument('--max_len', default=200, type=int)
parser.add_argument('--abuse_classes', default=1, type=int)
parser.add_argument('--bert_dropout', default=0.2, type=float)
parser.add_argument('--fc_dropout', default=0.4, type=float)
parser.add_argument('--num_epochs', default=12, type=int)
parser.add_argument('--context_window', default=3, type=int)
parser.add_argument('--lr', default=2e-5, type=float)
parser.add_argument('--wd', default=1e-4, type=float)
parser.add_argument('--csv_index', default=1, type=int)
args = parser.parse_args()
config = {
'PRE_TRAINED_MODEL_NAME': args.PRE_TRAINED_MODEL_NAME,
'batch_size': args.batch_size,
'max_len': args.max_len,
'abuse_classes': args.abuse_classes,
'bert_dropout': args.bert_dropout,
'fc_dropout': args.fc_dropout,
'device': torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu'),
'num_epochs': args.num_epochs,
'lr': args.lr,
'wd': args.wd,
'context_window':args.context_window}
df_train = pd.read_csv('train' + str(args.csv_index) + '.csv')
# df_val = pd.read_csv("val.csv")
df_test = pd.read_csv('test' + str(args.csv_index) + '.csv')
model = Abuse_lightning(df_train,[],df_test, config)
path = os.path.join(os.getcwd(), 'runs/lightning_logs/version_'+str(ctr)+'/checkpoints/')
# model.to(device)
checkpoint_callback = ModelCheckpoint(
save_top_k=1,
filepath = path,
verbose=True,
monitor='loss',
mode='min')
# early_stop_callback = EarlyStopping(
# monitor='val_loss',
# min_delta=0.00,
# patience=3,
# verbose=False,
# mode='min')
trainer = pl.Trainer(gpus = 4, progress_bar_refresh_rate=0, max_epochs= config['num_epochs'], checkpoint_callback=checkpoint_callback, distributed_backend="ddp") #, distributed_backend="ddp"
trainer.fit(model)
# trainer = pl.Trainer(gpus = 1, progress_bar_refresh_rate=0, max_epochs= config['num_epochs'], checkpoint_callback=checkpoint_callback)
# path = os.path.join(os.getcwd(), 'runs/lightning_logs/version_'+str(ctr)+'/')
# path = path + os.listdir(path)[0]
# print(path)
# model = Abuse_lightning.load_from_checkpoint(path, df_test=df_test)
# trainer.model = model
# trainer.test(model)
# shutil.rmtree("runs", ignore_errors=True)
# shutil.rmtree("lightning_logs", ignore_errors=True)
# os.remove('train' + str(args.csv_index) + '.csv')
# os.remove('test' + str(args.csv_index) + '.csv')