-
Notifications
You must be signed in to change notification settings - Fork 49
/
utils.py
346 lines (291 loc) · 11.7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
from typing import Dict, List, Optional, Union, Tuple, BinaryIO
import os
import sys
import json
import tempfile
import copy
from tqdm.auto import tqdm
from functools import partial
from urllib.parse import urlparse
from pathlib import Path
import requests
from hashlib import sha256
from filelock import FileLock
import importlib_metadata
import torch
import torch.nn as nn
from torch import Tensor
__version__ = "4.0.0"
_torch_version = importlib_metadata.version("torch")
hf_cache_home = os.path.expanduser(os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")))
default_cache_path = os.path.join(hf_cache_home, "transformers")
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
PRESET_MIRROR_DICT = {
"tuna": "https://mirrors.tuna.tsinghua.edu.cn/hugging-face-models",
"bfsu": "https://mirrors.bfsu.edu.cn/hugging-face-models",
}
HUGGINGFACE_CO_PREFIX = "https://huggingface.co/{model_id}/resolve/{revision}/{filename}"
WEIGHTS_NAME = "pytorch_model.bin"
CONFIG_NAME = "config.json"
def is_torch_available():
return True
def is_tf_available():
return False
def is_remote_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def http_get(url: str, temp_file: BinaryIO, proxies=None, resume_size=0, headers: Optional[Dict[str, str]] = None):
headers = copy.deepcopy(headers)
if resume_size > 0:
headers["Range"] = "bytes=%d-" % (resume_size,)
r = requests.get(url, stream=True, proxies=proxies, headers=headers)
r.raise_for_status()
content_length = r.headers.get("Content-Length")
total = resume_size + int(content_length) if content_length is not None else None
progress = tqdm(
unit="B",
unit_scale=True,
total=total,
initial=resume_size,
desc="Downloading",
disable=False,
)
for chunk in r.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
temp_file.write(chunk)
progress.close()
def url_to_filename(url: str, etag: Optional[str] = None) -> str:
url_bytes = url.encode("utf-8")
filename = sha256(url_bytes).hexdigest()
if etag:
etag_bytes = etag.encode("utf-8")
filename += "." + sha256(etag_bytes).hexdigest()
if url.endswith(".h5"):
filename += ".h5"
return filename
def hf_bucket_url(
model_id: str, filename: str, subfolder: Optional[str] = None, revision: Optional[str] = None, mirror=None
) -> str:
if subfolder is not None:
filename = f"{subfolder}/{filename}"
if mirror:
endpoint = PRESET_MIRROR_DICT.get(mirror, mirror)
legacy_format = "/" not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
if revision is None:
revision = "main"
return HUGGINGFACE_CO_PREFIX.format(model_id=model_id, revision=revision, filename=filename)
def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
ua = "transformers/{}; python/{}".format(__version__, sys.version.split()[0])
if is_torch_available():
ua += f"; torch/{_torch_version}"
if is_tf_available():
ua += f"; tensorflow/{_tf_version}"
if isinstance(user_agent, dict):
ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
elif isinstance(user_agent, str):
ua += "; " + user_agent
return ua
def get_from_cache(
url: str,
cache_dir=None,
force_download=False,
proxies=None,
etag_timeout=10,
resume_download=False,
user_agent: Union[Dict, str, None] = None,
use_auth_token: Union[bool, str, None] = None,
local_files_only=False,
) -> Optional[str]:
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
headers = {"user-agent": http_user_agent(user_agent)}
if isinstance(use_auth_token, str):
headers["authorization"] = "Bearer {}".format(use_auth_token)
elif use_auth_token:
token = HfFolder.get_token()
if token is None:
raise EnvironmentError("You specified use_auth_token=True, but a huggingface token was not found.")
headers["authorization"] = "Bearer {}".format(token)
url_to_download = url
etag = None
if not local_files_only:
try:
r = requests.head(url, headers=headers, allow_redirects=False, proxies=proxies, timeout=etag_timeout)
r.raise_for_status()
etag = r.headers.get("X-Linked-Etag") or r.headers.get("ETag")
# We favor a custom header indicating the etag of the linked resource, and
# we fallback to the regular etag header.
# If we don't have any of those, raise an error.
if etag is None:
raise OSError(
"Distant resource does not have an ETag, we won't be able to reliably ensure reproducibility."
)
# In case of a redirect,
# save an extra redirect on the request.get call,
# and ensure we download the exact atomic version even if it changed
# between the HEAD and the GET (unlikely, but hey).
if 300 <= r.status_code <= 399:
url_to_download = r.headers["Location"]
except (requests.exceptions.ConnectionError, requests.exceptions.Timeout):
# etag is already None
pass
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
# etag is None == we don't have a connection or we passed local_files_only.
# try to get the last downloaded one
if etag is None:
if os.path.exists(cache_path):
return cache_path
else:
matching_files = [
file
for file in fnmatch.filter(os.listdir(cache_dir), filename.split(".")[0] + ".*")
if not file.endswith(".json") and not file.endswith(".lock")
]
if len(matching_files) > 0:
return os.path.join(cache_dir, matching_files[-1])
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise FileNotFoundError(
"Cannot find the requested files in the cached path and outgoing traffic has been"
" disabled. To enable model look-ups and downloads online, set 'local_files_only'"
" to False."
)
else:
raise ValueError(
"Connection error, and we cannot find the requested files in the cached path."
" Please try again or make sure your Internet connection is on."
)
# From now on, etag is not None.
if os.path.exists(cache_path) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lock_path = cache_path + ".lock"
with FileLock(lock_path):
# If the download just completed while the lock was activated.
if os.path.exists(cache_path) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
incomplete_path = cache_path + ".incomplete"
@contextmanager
def _resumable_file_manager() -> "io.BufferedWriter":
with open(incomplete_path, "ab") as f:
yield f
temp_file_manager = _resumable_file_manager
if os.path.exists(incomplete_path):
resume_size = os.stat(incomplete_path).st_size
else:
resume_size = 0
else:
temp_file_manager = partial(tempfile.NamedTemporaryFile, mode="wb", dir=cache_dir, delete=False)
resume_size = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
http_get(url_to_download, temp_file, proxies=proxies, resume_size=resume_size, headers=headers)
os.replace(temp_file.name, cache_path)
meta = {"url": url, "etag": etag}
meta_path = cache_path + ".json"
with open(meta_path, "w") as meta_file:
json.dump(meta, meta_file)
return cache_path
def cached_path(
url_or_filename,
cache_dir=None,
force_download=False,
proxies=None,
resume_download=False,
user_agent: Union[Dict, str, None] = None,
extract_compressed_file=False,
force_extract=False,
use_auth_token: Union[bool, str, None] = None,
local_files_only=False,
) -> Optional[str]:
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if is_remote_url(url_or_filename):
# URL, so get it from the cache (downloading if necessary)
output_path = get_from_cache(
url_or_filename,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
user_agent=user_agent,
use_auth_token=use_auth_token,
local_files_only=local_files_only,
)
elif os.path.exists(url_or_filename):
# File, and it exists.
output_path = url_or_filename
elif urlparse(url_or_filename).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError("file {} not found".format(url_or_filename))
else:
# Something unknown
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
if extract_compressed_file:
if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
output_dir, output_file = os.path.split(output_path)
output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
output_path_extracted = os.path.join(output_dir, output_extract_dir_name)
if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lock_path = output_path + ".lock"
with FileLock(lock_path):
shutil.rmtree(output_path_extracted, ignore_errors=True)
os.makedirs(output_path_extracted)
if is_zipfile(output_path):
with ZipFile(output_path, "r") as zip_file:
zip_file.extractall(output_path_extracted)
zip_file.close()
elif tarfile.is_tarfile(output_path):
tar_file = tarfile.open(output_path)
tar_file.extractall(output_path_extracted)
tar_file.close()
else:
raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
return output_path_extracted
return output_path
def get_parameter_dtype(parameter: Union[nn.Module]):
try:
return next(parameter.parameters()).dtype
except StopIteration:
# For nn.DataParallel compatibility in PyTorch 1.5
def find_tensor_attributes(module: nn.Module) -> List[Tuple[str, Tensor]]:
tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)]
return tuples
gen = parameter._named_members(get_members_fn=find_tensor_attributes)
first_tuple = next(gen)
return first_tuple[1].dtype
def get_extended_attention_mask(attention_mask: Tensor, dtype) -> Tensor:
# attention_mask [batch_size, seq_length]
assert attention_mask.dim() == 2
# [batch_size, 1, 1, seq_length] for multi-head attention
extended_attention_mask = attention_mask[:, None, None, :]
extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
return extended_attention_mask