-
Notifications
You must be signed in to change notification settings - Fork 58
/
Copy pathvisualize_annotation.py
executable file
·204 lines (164 loc) · 7.07 KB
/
visualize_annotation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#!/usr/bin/python
#
# Copyright (c) 2018 Google LLC
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
""" Visualize Annotations. """
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import csv
import collections
import argparse
import subprocess
import bisect
import shutil
import multiprocessing
import functools
import cv2
import pandas as pd
import frame_lib
# Cache for video sequence timestamp.
video_time_sequence = {}
def read_csv(file_path):
file_list = []
with open(file_path, "r") as f:
file_reader = csv.reader(f, delimiter=",")
for row in file_reader:
file_list.append(row)
return file_list
def group_box(file_name):
csv_file = pd.read_csv(file_name, header=None)
merged_dict = collections.defaultdict(dict)
video_name_group = csv_file.groupby(0)
for video_group_name, video_group_value in video_name_group:
merged_dict[video_group_name] = {}
timestamp_group = video_group_value.groupby(1)
for (timestamp_group_name, timestamp_group_value) in timestamp_group:
merged_dict[video_group_name][
timestamp_group_name] = timestamp_group_value.values
return merged_dict
def get_time_sequence_path(video_name, visualize_output_dir):
return os.path.join(visualize_output_dir, "tmp_all_frames",
os.path.basename(video_name).replace(".mp4", ""))
def get_timestamp_sequence(video_name, visualize_output_dir):
global video_time_sequence
if video_name in video_time_sequence:
return video_time_sequence[video_name]
output_dir = get_time_sequence_path(video_name, visualize_output_dir)
frame_list = sorted(os.listdir(output_dir))
video_time_sequence[video_name] = [
int(f.replace(".jpg", "")) for f in frame_list
]
return video_time_sequence[video_name]
def extract_frames(video_name, timestamp, ts_group_array, video_dir,
visualize_output_dir, is_millisecond):
bboxes = ts_group_array[:, 3:7]
video_path = os.path.join(video_dir, video_name)
timestamp_sequence = get_timestamp_sequence(video_path, visualize_output_dir)
if is_millisecond:
timestamp *= 1e3
index = bisect.bisect(timestamp_sequence, timestamp)
if index == 0:
timestamp = timestamp_sequence[0]
elif index == len(timestamp_sequence):
timestamp = timestamp_sequence[-1]
else:
if timestamp - timestamp_sequence[
index - 1] < timestamp_sequence[index] - timestamp:
timestamp = timestamp_sequence[index - 1]
else:
timestamp = timestamp_sequence[index]
output_dir = os.path.join(visualize_output_dir, video_name.replace(
".mp4", ""))
if not os.path.exists(output_dir):
os.makedirs(output_dir)
output_file_name = os.path.join(output_dir, "{:013d}".format(
int(timestamp))) + ".jpg"
time_sequence_path = get_time_sequence_path(video_name, visualize_output_dir)
input_file_name = os.path.join(time_sequence_path,
"{:013d}.jpg".format(timestamp))
if not os.path.exists(input_file_name):
print("{} Cannot be generated.".format(input_file_name))
return
image = cv2.imread(input_file_name)
image_height, image_width, _ = image.shape
for bbox in bboxes:
bbox = [
bbox[0] * image_width, bbox[1] * image_height, bbox[2] * image_width,
bbox[3] * image_height
]
bbox = [int(b) for b in bbox]
image = cv2.rectangle(
image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), thickness=2)
cv2.imwrite(output_file_name, image)
def extract_all_frames(video_dir, video_name, visualize_output_dir):
output_dir = os.path.join(visualize_output_dir, "tmp_all_frames")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
video_path = os.path.join(video_dir, video_name)
frame_lib.extract_video_frame(video_path, output_dir)
def visualize_annotation_per_video(video_name, merged_dict,
visualize_output_dir, is_millisecond):
print('Processing {} ... '.format(video_name))
extract_all_frames(args.video_dir, video_name, args.visualize_output_dir)
for timestamp in merged_dict[video_name]:
extract_frames(video_name, timestamp, merged_dict[video_name][timestamp],
args.video_dir, args.visualize_output_dir,
args.is_millisecond)
time_sequence_path = get_time_sequence_path(video_name,
args.visualize_output_dir)
shutil.rmtree(time_sequence_path)
print('Finished processing {}.'.format(video_name))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-f", "--csv_file_path", type=str, required=True)
parser.add_argument("-v", "--video_dir", type=str, required=True)
parser.add_argument("-o", "--visualize_output_dir", type=str, required=True)
parser.add_argument("-m", "--is_millisecond", action="store_true")
parser.add_argument("-n", "--num_threads", type=int, default=5)
parser.add_argument(
"--force",
action="store_true",
help="force removing the existing visualize_output_dir")
args = parser.parse_args()
if not os.path.exists(args.csv_file_path):
raise Exception("csv_file_path {} doesn't exist".format(args.csv_file_path))
if not os.path.exists(args.video_dir):
raise Exception("video_dir {} doesn't exist".format(args.video_dir))
if args.force and os.path.exists(args.visualize_output_dir):
shutil.rmtree(args.visualize_output_dir)
if not os.path.exists(args.visualize_output_dir):
os.makedirs(args.visualize_output_dir)
merged_dict = group_box(args.csv_file_path)
single_thread_fn = functools.partial(
visualize_annotation_per_video,
merged_dict=merged_dict,
visualize_output_dir=args.visualize_output_dir,
is_millisecond=args.is_millisecond)
if args.num_threads == 1:
for video_name in merged_dict:
single_thread_fn(video_name)
else:
p = multiprocessing.Pool(args.num_threads)
p.map(single_thread_fn, merged_dict.keys())
# Remove a tmp path.
tmp_frame_path = os.path.join(args.visualize_output_dir, "tmp_all_frames")
if os.path.exists(tmp_frame_path):
shutil.rmtree(tmp_frame_path)