This repository has been archived by the owner on Jan 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtrainer.py
720 lines (647 loc) · 28.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
# Copyright (C) 2021 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train library."""
import dataclasses
import functools
import itertools
import os
import shutil
import sys
from typing import Any
from absl import logging
from flax.metrics import tensorboard
from flax.training import checkpoints
from flax.training import common_utils
from flax.training import early_stopping
from flax.training import train_state
import jax
import jax.numpy as jnp
import ml_collections
import numpy as np
import optax
import tensorflow as tf
import tensorflow_datasets as tfds
from core.data import codenet_paths
from core.data import data_io
from core.data import error_kinds
from core.lib import finetune
from core.lib import metadata
from core.lib import metrics
from core.lib import models
from core.lib import optimizer_lib
DEFAULT_DATASET_PATH = codenet_paths.DEFAULT_DATASET_PATH
Config = ml_collections.ConfigDict
EvaluationMetric = metrics.EvaluationMetric
class TrainState(train_state.TrainState):
rng: Any
@dataclasses.dataclass
class Trainer:
config: Config
info: Any
def load_dataset(
self, dataset_path=DEFAULT_DATASET_PATH, split='train', epochs=None,
include_strings=False, class_subsample_values='default',
):
if class_subsample_values == 'default':
class_subsample_values = {1: 0.0660801055}
config = self.config
batch_size = config.batch_size
if epochs is None:
# config.epochs == 0 -> None
epochs = config.epochs or None
allowlist = config.allowlist
padded_shapes = data_io.get_padded_shapes(
config.max_tokens, config.max_num_nodes, config.max_num_edges, include_strings=include_strings)
if allowlist == 'TIER1_ERROR_IDS':
allowlist = error_kinds.TIER1_ERROR_IDS
filter_fn = data_io.make_filter(
config.max_tokens, config.max_num_nodes, config.max_num_edges,
config.max_steps, allowlist=allowlist, class_subsample_values=class_subsample_values,
use_in_dataset_field=config.use_in_dataset_field)
if config.binary_targets:
map_fn = functools.partial(data_io.binarize_targets, dataset_path=dataset_path)
else:
map_fn = lambda x: x
if split.endswith('-batch'):
# Prepare a dataset with a single repeating batch.
split = split[:-len('-batch')]
return (
data_io.load_dataset(dataset_path, split=split, include_strings=include_strings)
.map(map_fn)
.filter(filter_fn)
.take(batch_size)
.repeat(epochs)
.padded_batch(batch_size, padded_shapes=padded_shapes)
)
# Return the requested dataset.
return (
data_io.load_dataset(dataset_path, split=split, include_strings=include_strings)
.map(map_fn)
.filter(filter_fn)
.repeat(epochs)
.shuffle(1000)
.padded_batch(batch_size, padded_shapes=padded_shapes, drop_remainder=True)
)
def make_model(self, deterministic):
return models.make_model(self.config, self.info, deterministic)
def create_train_state(self, rng, model):
"""Creates initial TrainState."""
config = self.config
fake_input = data_io.get_fake_input(
config.batch_size, config.max_tokens, config.max_num_nodes, config.max_num_edges)
rng, params_rng, dropout_rng = jax.random.split(rng, 3)
variables = model.init(
{'params': params_rng, 'dropout': dropout_rng},
fake_input)
params = variables['params']
learning_rate = config.learning_rate
if config.optimizer == 'sgd':
tx = optax.sgd(learning_rate)
elif config.optimizer == 'adam':
tx = optax.adam(learning_rate)
else:
raise ValueError('Unexpected optimizer', config.optimizer)
# TODO(dbieber): I don't think model.apply is used from here.
# Instead, it's used from make_loss_fn.
return TrainState.create(
apply_fn=model.apply, params=params, tx=tx, rng=rng)
def create_train_state_from_params(self, rng, model, params, step):
"""Creates initial TrainState. Skips init and uses params."""
config = self.config
rng, params_rng, dropout_rng = jax.random.split(rng, 3)
learning_rate = config.learning_rate
if config.optimizer == 'sgd':
tx = optax.sgd(learning_rate)
elif config.optimizer == 'adam':
tx = optax.adam(learning_rate)
else:
raise ValueError('Unexpected optimizer', config.optimizer)
# TODO(dbieber): I don't think model.apply is used from here.
# Instead, it's used from make_loss_fn.
opt_state = tx.init(params)
return TrainState(
step=step,
apply_fn=model.apply,
params=params,
tx=tx,
opt_state=opt_state,
rng=rng,
)
def restore_checkpoint(self, restore_checkpoint_dir, init_rng, model):
state_dict = checkpoints.restore_checkpoint(restore_checkpoint_dir, None)
return self.create_train_state_from_params(init_rng, model, state_dict['params'], state_dict['step'])
def make_loss_fn(self, deterministic):
model = self.make_model(deterministic)
num_classes = self.info.num_classes
def loss_fn(params, batch, dropout_rng):
logits, aux = model.apply(
{'params': params},
batch,
rngs={'dropout': dropout_rng}
)
aux = aux or {}
assert len(logits.shape) == 2
# logits.shape: batch_size, num_classes
labels = jax.nn.one_hot(jnp.squeeze(batch['target'], axis=-1), num_classes)
assert len(labels.shape) == 2
# labels.shape: batch_size, num_classes
losses = optax.softmax_cross_entropy(
logits=logits,
labels=labels)
assert len(losses.shape) == 1
# losses.shape: batch_size
loss = jnp.mean(losses)
assert len(loss.shape) == 0
aux.update({'logits': logits})
return loss, aux
return loss_fn
def make_train_step(self):
loss_fn = self.make_loss_fn(deterministic=False)
grad_clip_value = self.config.grad_clip_value
@jax.jit
def train_step(state, batch):
"""The on-device part of a train step."""
new_rng, dropout_rng = jax.random.split(state.rng, 2)
state = dataclasses.replace(state, rng=new_rng)
grad_fn = jax.value_and_grad(loss_fn, argnums=0, has_aux=True)
(loss, loss_aux), grads = grad_fn(state.params, batch, dropout_rng)
if self.config.multidevice:
grads = jax.lax.pmean(grads, 'batch')
global_norm = optimizer_lib.compute_global_norm(grads)
if grad_clip_value:
grads = optimizer_lib.clip_grads(grads, clip_by='global_norm', clip_value=grad_clip_value)
state = state.apply_gradients(grads=grads)
# TODO(dbieber): Optionally compute on-device metrics here.
aux = {
'logits': loss_aux['logits'],
'loss': loss,
'global_norm': global_norm,
}
for key in [
'raise_decisions',
EvaluationMetric.INSTRUCTION_POINTER.value,
'instruction_pointer_orig',
'localization_logits',
]:
if key in loss_aux:
aux[key] = loss_aux[key]
return state, aux
if self.config.multidevice:
train_step = jax.pmap(
train_step,
axis_name='batch',
in_axes=(None, 0),
out_axes=(None, 0),
)
return train_step
def make_evaluate_batch(self):
config = self.config
num_classes = self.info.num_classes
loss_fn = self.make_loss_fn(deterministic=True)
if config.multidevice:
loss_fn = jax.pmap(
loss_fn,
axis_name='batch',
in_axes=(None, 0, None),
out_axes=0,
)
def evaluate_batch(batch, state):
new_rng, dropout_rng = jax.random.split(state.rng, 2)
state = dataclasses.replace(state, rng=new_rng)
# TODO(dbieber): Dropout shouldn't be used during the evaluation.
# TODO(dbieber): And if it were to be used, we'd want per-device randoms.
loss, aux = loss_fn(state.params, batch, dropout_rng)
logits = aux['logits']
targets = jnp.squeeze(batch['target'], axis=-1)
if config.multidevice:
loss = jnp.mean(loss)
logits = jnp.reshape(logits, (-1,) + logits.shape[2:])
targets = jnp.reshape(targets, (-1,) + targets.shape[2:])
# logits.shape: batch_size, num_classes
# targets.shape: batch_size
return {
'logits': logits,
'loss': loss,
'localization_logits': aux.get('localization_logits'),
}
return evaluate_batch
def run_eval(self, dataset, state, evaluate_batch):
config = self.config
num_classes = self.info.num_classes
predictions = []
logits_list = []
localization_predictions = []
targets = []
localization_targets = []
localization_num_targets = []
losses = []
dataset = (
dataset
.filter(lambda x: tf.random.uniform(shape=()) < config.eval_subsample)
.take(config.eval_max_batches)
)
print(f'Evaluating with metrics: {config.eval_metric_names}')
for batch in tfds.as_numpy(dataset):
if config.multidevice:
batch = common_utils.shard(batch)
evaluate_batch_outputs = evaluate_batch(batch, state)
logits = np.array(evaluate_batch_outputs['logits'])
loss = np.array(evaluate_batch_outputs['loss'])
if evaluate_batch_outputs.get('localization_logits') is not None:
localization_targets.append(np.array(batch['target_node_indexes']))
localization_num_targets.append(np.array(batch['num_target_nodes']))
localization_logits = np.array(evaluate_batch_outputs['localization_logits'])
# localization_logits.shape: [device,] batch_size[/device], num_nodes
localization_predictions.append(np.argmax(localization_logits, -1))
logits_list.append(logits)
predictions.append(np.argmax(logits, -1))
targets.append(np.array(batch['target']))
losses.append(loss)
print('Done evaluating.')
logits_np = np.concatenate(logits_list)
# logits_np.shape: num_eval_examples, num_classes
predictions = np.concatenate(predictions)
targets = np.concatenate(targets).flatten()
num_examples = targets.shape[0]
eval_loss = np.mean(np.array(losses))
# targets.shape: num_eval_examples
# predictions.shape: num_eval_examples
assert predictions.shape == targets.shape
assert len(predictions.shape) == 1
if localization_targets:
localization_targets = np.concatenate(localization_targets)
localization_num_targets = np.concatenate(localization_num_targets)
localization_predictions = np.concatenate(localization_predictions)
# localization_targets.shape: num_eval_examples, [batch_per_device,], max_target_nodes
if config.multidevice:
localization_targets = np.reshape(localization_targets, (-1,) + localization_targets.shape[2:])
localization_num_targets = np.reshape(localization_num_targets, (-1,) + localization_num_targets.shape[2:])
localization_predictions = np.reshape(localization_predictions, (-1,) + localization_predictions.shape[2:])
else:
localization_targets = None
localization_num_targets = None
localization_predictions = None
eval_metrics = metrics.evaluate(
targets, predictions, logits_np, num_classes,
localization_targets,
localization_num_targets,
localization_predictions,
config.eval_metric_names,
self.info)
return eval_loss, eval_metrics, num_examples
def run_test(self, dataset_path=DEFAULT_DATASET_PATH, split='test', steps=None):
config = self.config
# Ensure eval_subsample==1 and eval_max_batches==-1 are set to test on the full split.
assert config.eval_subsample == 1
assert config.eval_max_batches == -1
print(f'Testing on data: {dataset_path}')
print(f'Using model: {config.model_class}')
dataset = self.load_dataset(dataset_path, split=split, epochs=1, class_subsample_values=None)
num_classes = self.info.num_classes
all_error_kinds = self.info.all_error_kinds
evaluate_batch = self.make_evaluate_batch()
study_id = config.study_id
exp_id = config.experiment_id or codenet_paths.make_experiment_id()
run_id = config.run_id or codenet_paths.make_run_id()
run_dir = codenet_paths.make_run_dir(study_id, exp_id, run_id)
os.makedirs(run_dir, exist_ok=True)
metadata_path = codenet_paths.make_metadata_path(run_dir)
metadata.write_metadata(metadata_path)
test_dir = codenet_paths.make_log_dir(run_dir, 'test')
rng = jax.random.PRNGKey(0)
rng, init_rng = jax.random.split(rng)
model = self.make_model(deterministic=False)
checkpoint_dir = codenet_paths.make_checkpoints_path(run_dir)
assert config.restore_checkpoint_dir
# shutil.copytree(config.restore_checkpoint_dir, checkpoint_dir)
state = self.restore_checkpoint(config.restore_checkpoint_dir, init_rng, model)
# Copy the restored checkpoint into the checkpoint_dir.
step = state.step
print(f'Step: {step}')
test_writer = tensorboard.SummaryWriter(test_dir)
# Determine the file descriptors for the summary writer.
pid = os.getpid()
test_writer_fd = None
if os.path.exists(f'/proc/{pid}/fd'):
for fd in os.listdir(f'/proc/{pid}/fd'):
if test_dir in os.path.realpath(f'/proc/{pid}/fd/{fd}'):
test_writer_fd = int(fd)
test_writer.hparams(config.to_dict())
test_writer.flush()
if test_writer_fd:
os.fsync(test_writer_fd)
sys.stdout.flush()
test_loss, test_metrics, num_examples = self.run_eval(dataset, state, evaluate_batch)
test_writer.scalar('loss', test_loss, step)
test_writer.scalar('num_examples', num_examples, step)
metrics.write_metric(EvaluationMetric.ACCURACY.value, test_metrics,
test_writer.scalar, step)
metrics.write_metric(EvaluationMetric.WEIGHTED_F1_SCORE.value, test_metrics,
test_writer.scalar, step)
metrics.write_metric(EvaluationMetric.MACRO_F1_SCORE.value, test_metrics,
test_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_F1_SCORE.value, test_metrics,
test_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_AUC.value, test_metrics,
test_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_RECALL_AT_90.value, test_metrics,
test_writer.scalar, step)
metrics.write_metric(EvaluationMetric.WEIGHTED_F1_SCORE_ERROR_ONLY.value, test_metrics,
test_writer.scalar, step)
metrics.write_metric(
EvaluationMetric.CONFUSION_MATRIX.value,
test_metrics,
test_writer.image,
step,
transform_fn=functools.partial(
metrics.confusion_matrix_to_image, class_names=all_error_kinds))
metrics.write_metric(
EvaluationMetric.LOCALIZATION_ACCURACY.value,
test_metrics, test_writer.scalar, step)
sys.stdout.flush()
test_writer.flush()
if test_writer_fd:
os.fsync(test_writer_fd)
def run_train(self, dataset_path=DEFAULT_DATASET_PATH, split='train', steps=None):
config = self.config
info = self.info
print(f'Training on data: {dataset_path}')
print(f'Traning using model: {config.model_class}')
class_subsample_values = info.class_subsample_values
dataset = self.load_dataset(dataset_path, split=split, class_subsample_values=class_subsample_values)
num_classes = self.info.num_classes
all_error_kinds = self.info.all_error_kinds
valid_dataset = self.load_dataset(dataset_path, split='valid', epochs=1, class_subsample_values=class_subsample_values)
evaluate_batch = self.make_evaluate_batch()
study_id = config.study_id
exp_id = config.experiment_id or codenet_paths.make_experiment_id()
run_id = config.run_id or codenet_paths.make_run_id()
run_dir = codenet_paths.make_run_dir(study_id, exp_id, run_id)
print(run_dir)
if steps == 0:
steps = None # Run forever.
os.makedirs(run_dir, exist_ok=True)
metadata_path = codenet_paths.make_metadata_path(run_dir)
metadata.write_metadata(metadata_path)
checkpoint_dir = codenet_paths.make_checkpoints_path(run_dir)
top_checkpoint_dir = codenet_paths.make_top_checkpoints_path(run_dir)
train_dir = codenet_paths.make_log_dir(run_dir, 'train')
valid_dir = codenet_paths.make_log_dir(run_dir, 'valid')
print(f'Checkpoints: {checkpoint_dir}')
rng = jax.random.PRNGKey(config.seed)
rng, init_rng = jax.random.split(rng)
model = self.make_model(deterministic=False)
if os.path.exists(checkpoint_dir):
# If we're restoring an interrupted run, that takes priority.
state = self.restore_checkpoint(checkpoint_dir, init_rng, model)
elif config.restore_checkpoint_dir:
# Next, if the config says to start from some checkpoint, do so.
if config.finetune == 'IPAGNN':
# The checkpoint we're loading from will have different parameters.
state = self.create_train_state(init_rng, model)
state = finetune.finetune_from_ipagnn(state, config.restore_checkpoint_dir, config)
elif config.finetune == 'LSTM':
# The checkpoint we're loading from will have different parameters.
state = self.create_train_state(init_rng, model)
state = finetune.finetune_from_lstm(state, config.restore_checkpoint_dir, config)
else:
assert config.finetune == 'ALL'
state = self.restore_checkpoint(config.restore_checkpoint_dir, init_rng, model)
else:
# Initialize random.
state = self.create_train_state(init_rng, model)
train_step = self.make_train_step()
if config.save_freq >= 50000:
keep_num = 100
else:
# If saving very frequently, don't keep as many checkpoints on disk.
keep_num = 10
# TODO(rishab): Store the state of the early stopping.
es = early_stopping.EarlyStopping(
min_delta=config.early_stopping_delta,
patience=config.early_stopping_threshold,
)
train_writer = tensorboard.SummaryWriter(train_dir)
valid_writer = tensorboard.SummaryWriter(valid_dir)
# Determine the file descriptors for the summary writers.
pid = os.getpid()
train_writer_fd = valid_writer_fd = None
if os.path.exists(f'/proc/{pid}/fd'):
for fd in os.listdir(f'/proc/{pid}/fd'):
if train_dir in os.path.realpath(f'/proc/{pid}/fd/{fd}'):
train_writer_fd = int(fd)
if valid_dir in os.path.realpath(f'/proc/{pid}/fd/{fd}'):
valid_writer_fd = int(fd)
train_writer.hparams(config.to_dict())
train_writer.flush()
if train_writer_fd:
os.fsync(train_writer_fd)
sys.stdout.flush()
train_logits = []
train_predictions = []
train_targets = []
train_localization_predictions = []
train_localization_targets = []
train_localization_num_targets = []
train_losses = []
print('Starting training')
for step_index, batch in itertools.islice(enumerate(tfds.as_numpy(dataset)), steps):
step = state.step
if config.multidevice:
batch = common_utils.shard(batch)
state, aux = train_step(state, batch)
# Record training batch evaluation data.
logits = np.array(aux['logits'])
predictions = np.squeeze(np.argmax(logits, axis=-1))
targets = np.squeeze(np.array(batch['target']))
loss = np.mean(np.array(aux['loss']))
train_logits.append(logits)
train_predictions.append(predictions)
train_targets.append(targets)
train_losses.append(loss)
if aux.get('localization_logits') is not None:
localization_targets = np.array(batch['target_node_indexes'])
localization_num_targets = np.array(batch['num_target_nodes'])
localization_predictions = np.argmax(np.array(aux['localization_logits']), axis=-1)
train_localization_targets.append(localization_targets)
train_localization_num_targets.append(localization_num_targets)
train_localization_predictions.append(localization_predictions)
else:
localization_predictions = None
localization_targets = None
localization_num_targets = None
# Save checkpoints.
if step % config.save_freq == 0:
checkpoints.save_checkpoint(checkpoint_dir, state, step, keep=keep_num)
# Do batch evaluation.
if step % config.eval_freq == 0:
# Evaluate on aggregated training data.
train_loss = np.mean(np.array(train_losses))
if train_localization_targets:
train_localization_targets_np = np.concatenate(train_localization_targets)
train_localization_num_targets_np = np.concatenate(train_localization_num_targets)
train_localization_predictions_np = np.concatenate(train_localization_predictions)
if config.multidevice:
train_localization_targets_np = np.reshape(train_localization_targets_np, (-1,) + train_localization_targets_np.shape[2:])
train_localization_num_targets_np = np.reshape(train_localization_num_targets_np, (-1,) + train_localization_num_targets_np.shape[2:])
train_localization_predictions_np = np.reshape(train_localization_predictions_np, (-1,) + train_localization_predictions_np.shape[2:])
# train_localization_targets_np.shape: num_examples, max_target_nodes
# train_localization_num_targets_np.shape: num_examples, 1
# train_localization_predictions_np.shape: num_examples
else:
train_localization_targets_np = None
train_localization_num_targets_np = None
train_localization_predictions_np = None
train_logits_np = np.concatenate(train_logits)
if config.multidevice:
train_logits_np = np.reshape(train_logits_np, (-1,) + train_logits_np.shape[2:])
train_metrics = metrics.evaluate(
np.reshape(np.array(train_targets), -1),
np.reshape(np.array(train_predictions), -1),
train_logits_np,
num_classes,
train_localization_targets_np,
train_localization_num_targets_np,
train_localization_predictions_np,
config.eval_metric_names,
self.info)
train_accuracy = train_metrics.get(EvaluationMetric.ACCURACY.value)
train_accuracy_str = (f'{100 * train_accuracy:02.1f}'
if train_accuracy is not None else None)
if localization_predictions is not None:
# localization_targets.shape: [device,] batch_size, max_target_nodes
# localization_num_targets.shape: [device,] batch_size, 1
# localization_predictions.shape: [device,] batch_size
if config.multidevice:
localization_targets = np.reshape(localization_targets, (-1,) + localization_targets.shape[2:])
localization_num_targets = np.reshape(localization_num_targets, (-1,) + localization_num_targets.shape[2:])
localization_predictions = np.reshape(localization_predictions, (-1,) + localization_predictions.shape[2:])
# localization_targets.shape: batch_size, max_target_nodes
# localization_num_targets.shape: batch_size, 1
# localization_predictions.shape: batch_size
if config.multidevice:
logits = np.reshape(logits, (-1,) + logits.shape[2:])
batch_metrics = metrics.evaluate(
np.reshape(targets, -1),
np.reshape(predictions, -1),
logits,
num_classes,
localization_targets,
localization_num_targets,
localization_predictions,
[EvaluationMetric.ACCURACY.value],
self.info)
batch_accuracy = batch_metrics[EvaluationMetric.ACCURACY.value]
print(f"""--- Step {step}
Loss: {train_loss}
Predictions:
{predictions}
Targets:
{targets}
Train Accuracy: {train_accuracy_str}
Last Minibatch Accuracy: {100 * batch_accuracy:02.1f}""")
# Evaluate on validation dataset.
valid_loss, valid_metrics, num_examples = self.run_eval(
valid_dataset, state, evaluate_batch)
logging.info(
f'Validation loss ({num_examples} examples): {valid_loss}\n'
f'Validation metrics: {valid_metrics}'
)
# Write training metrics.
train_writer.scalar('global_norm', np.mean(np.array(aux['global_norm'])), step)
train_writer.scalar('loss', train_loss, step)
metrics.write_metric(EvaluationMetric.ACCURACY.value, train_metrics,
train_writer.scalar, step)
metrics.write_metric(EvaluationMetric.WEIGHTED_F1_SCORE.value, train_metrics,
train_writer.scalar, step)
metrics.write_metric(EvaluationMetric.MACRO_F1_SCORE.value, train_metrics,
train_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_F1_SCORE.value, train_metrics,
train_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_AUC.value, train_metrics,
train_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_RECALL_AT_90.value, train_metrics,
train_writer.scalar, step)
metrics.write_metric(EvaluationMetric.WEIGHTED_F1_SCORE_ERROR_ONLY.value, train_metrics,
train_writer.scalar, step)
metrics.write_metric(
EvaluationMetric.CONFUSION_MATRIX.value,
train_metrics,
train_writer.image,
step,
transform_fn=functools.partial(
metrics.confusion_matrix_to_image, class_names=all_error_kinds))
metrics.write_metric(
EvaluationMetric.INSTRUCTION_POINTER.value,
aux,
train_writer.image,
step,
transform_fn=functools.partial(
metrics.instruction_pointers_to_images,
multidevice=config.multidevice))
metrics.write_metric(
EvaluationMetric.LOCALIZATION_ACCURACY.value,
train_metrics, train_writer.scalar, step)
# Write validation metrics.
valid_writer.scalar('loss', valid_loss, step)
metrics.write_metric(EvaluationMetric.ACCURACY.value, valid_metrics,
valid_writer.scalar, step)
metrics.write_metric(EvaluationMetric.WEIGHTED_F1_SCORE.value, valid_metrics,
valid_writer.scalar, step)
metrics.write_metric(EvaluationMetric.MACRO_F1_SCORE.value, valid_metrics,
valid_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_F1_SCORE.value, valid_metrics,
valid_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_AUC.value, valid_metrics,
valid_writer.scalar, step)
metrics.write_metric(EvaluationMetric.BINARY_RECALL_AT_90.value, valid_metrics,
valid_writer.scalar, step)
metrics.write_metric(EvaluationMetric.WEIGHTED_F1_SCORE_ERROR_ONLY.value, valid_metrics,
valid_writer.scalar, step)
metrics.write_metric(
EvaluationMetric.CONFUSION_MATRIX.value,
valid_metrics,
valid_writer.image,
step,
transform_fn=functools.partial(
metrics.confusion_matrix_to_image, class_names=all_error_kinds))
metrics.write_metric(
EvaluationMetric.LOCALIZATION_ACCURACY.value,
valid_metrics, valid_writer.scalar, step)
primary_metric_value = valid_metrics[config.eval_primary_metric_name]
# Higher is better for primary_metric_value_pos.
primary_metric_value_pos = config.eval_primary_metric_scale * primary_metric_value
did_improve, es = es.update(-1 * primary_metric_value_pos)
if did_improve:
checkpoints.save_checkpoint(top_checkpoint_dir, state, state.step, keep=3, overwrite=True)
if es.should_stop and config.early_stopping_on:
logging.info('Early stopping triggered.')
break
sys.stdout.flush()
train_writer.flush()
valid_writer.flush()
if train_writer_fd:
os.fsync(train_writer_fd)
if valid_writer_fd:
os.fsync(valid_writer_fd)
# Clear training evaluation data.
train_logits.clear()
train_predictions.clear()
train_targets.clear()
train_losses.clear()
train_localization_targets.clear()
train_localization_num_targets.clear()
train_localization_predictions.clear()
# Save final state.
checkpoints.save_checkpoint(checkpoint_dir, state, state.step, keep=keep_num)