Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

multitask object detection result is wrong! #41

Open
jiejie1993 opened this issue Jun 29, 2023 · 2 comments
Open

multitask object detection result is wrong! #41

jiejie1993 opened this issue Jun 29, 2023 · 2 comments

Comments

@jiejie1993
Copy link

when I run the 'pix2seq_inference_multitask.ipynb', the detection result is below, the detection result is almostly 640,which might be wrong, why the problem happen?
`(<tf.Tensor: shape=(1, 640, 640, 3), dtype=float32, numpy=
array([[[[0.03137255, 0.03529412, 0.04313725],
[0.01960784, 0.02352941, 0.03137255],
[0.00784314, 0.01176471, 0.01960784],
...,
[0.3 , 0.3 , 0.3 ],
[0.3 , 0.3 , 0.3 ],
[0.3 , 0.3 , 0.3 ]],

    [[0.00784314, 0.01176471, 0.01960784],
     [0.00784314, 0.01176471, 0.01960784],
     [0.00784314, 0.01176471, 0.01960784],
     ...,
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ]],

    [[0.00784314, 0.01176471, 0.01960784],
     [0.00784314, 0.01176471, 0.01960784],
     [0.01176471, 0.01568627, 0.02352941],
     ...,
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ]],

    ...,

    [[0.50980395, 0.5137255 , 0.5294118 ],
     [0.5254902 , 0.5294118 , 0.54509807],
     [0.50980395, 0.50980395, 0.5176471 ],
     ...,
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ]],

    [[0.5568628 , 0.5686275 , 0.5882353 ],
     [0.5294118 , 0.53333336, 0.54901963],
     [0.5294118 , 0.5294118 , 0.5372549 ],
     ...,
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ]],

    [[0.5803922 , 0.5921569 , 0.6117647 ],
     [0.5254902 , 0.5294118 , 0.54509807],
     [0.5254902 , 0.5294118 , 0.5372549 ],
     ...,
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ],
     [0.3       , 0.3       , 0.3       ]]]], dtype=float32)>, <tf.Tensor: shape=(1,), dtype=int32, numpy=array([230983], dtype=int32)>, <tf.Tensor: shape=(1, 10, 4), dtype=float32, numpy=

array([[[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 0.5105105, 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[0.7327327, 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ]]], dtype=float32)>, <tf.Tensor: shape=(1, 10, 4), dtype=float32, numpy=
array([[[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 326.7267 , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[468.94894, 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ]]], dtype=float32)>, <tf.Tensor: shape=(1, 10), dtype=int64, numpy=array([[505, 802, 505, 505, 505, 505, 505, 776, 505, 505]])>, <tf.Tensor: shape=(1, 10), dtype=float32, numpy=
array([[8.74843026e-05, 9.13504991e-05, 8.93203469e-05, 8.99704537e-05,
8.39981003e-05, 9.77213494e-05, 8.80038278e-05, 8.94075274e-05,
1.05320119e-04, 1.03460596e-04]], dtype=float32)>, <tf.Tensor: shape=(1, 10), dtype=int64, numpy=array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])>, <tf.Tensor: shape=(1, 10, 4), dtype=float32, numpy=
array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]], dtype=float32)>, <tf.Tensor: shape=(1, 10, 4), dtype=float32, numpy=
array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]], dtype=float32)>, <tf.Tensor: shape=(1, 10), dtype=float32, numpy=array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)>, <tf.Tensor: shape=(1, 10), dtype=bool, numpy=
array([[False, False, False, False, False, False, False, False, False,
False]])>)
`

@52THANOS
Copy link

can i see your pip list,i have environment conflict

@Guzaiwang
Copy link

Maybe you need to check whether the ckpt model has been loaded successfully.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants