You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
when I run the 'pix2seq_inference_multitask.ipynb', the detection result is below, the detection result is almostly 640,which might be wrong, why the problem happen?
`(<tf.Tensor: shape=(1, 640, 640, 3), dtype=float32, numpy=
array([[[[0.03137255, 0.03529412, 0.04313725],
[0.01960784, 0.02352941, 0.03137255],
[0.00784314, 0.01176471, 0.01960784],
...,
[0.3 , 0.3 , 0.3 ],
[0.3 , 0.3 , 0.3 ],
[0.3 , 0.3 , 0.3 ]],
when I run the 'pix2seq_inference_multitask.ipynb', the detection result is below, the detection result is almostly 640,which might be wrong, why the problem happen?
`(<tf.Tensor: shape=(1, 640, 640, 3), dtype=float32, numpy=
array([[[[0.03137255, 0.03529412, 0.04313725],
[0.01960784, 0.02352941, 0.03137255],
[0.00784314, 0.01176471, 0.01960784],
...,
[0.3 , 0.3 , 0.3 ],
[0.3 , 0.3 , 0.3 ],
[0.3 , 0.3 , 0.3 ]],
array([[[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 0.5105105, 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[0.7327327, 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ],
[1. , 1. , 1. , 1. ]]], dtype=float32)>, <tf.Tensor: shape=(1, 10, 4), dtype=float32, numpy=
array([[[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 326.7267 , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[468.94894, 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ],
[640. , 640. , 640. , 640. ]]], dtype=float32)>, <tf.Tensor: shape=(1, 10), dtype=int64, numpy=array([[505, 802, 505, 505, 505, 505, 505, 776, 505, 505]])>, <tf.Tensor: shape=(1, 10), dtype=float32, numpy=
array([[8.74843026e-05, 9.13504991e-05, 8.93203469e-05, 8.99704537e-05,
8.39981003e-05, 9.77213494e-05, 8.80038278e-05, 8.94075274e-05,
1.05320119e-04, 1.03460596e-04]], dtype=float32)>, <tf.Tensor: shape=(1, 10), dtype=int64, numpy=array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]])>, <tf.Tensor: shape=(1, 10, 4), dtype=float32, numpy=
array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]], dtype=float32)>, <tf.Tensor: shape=(1, 10, 4), dtype=float32, numpy=
array([[[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]]], dtype=float32)>, <tf.Tensor: shape=(1, 10), dtype=float32, numpy=array([[0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]], dtype=float32)>, <tf.Tensor: shape=(1, 10), dtype=bool, numpy=
array([[False, False, False, False, False, False, False, False, False,
False]])>)
`
The text was updated successfully, but these errors were encountered: