-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
cfd_model.py
93 lines (80 loc) · 3.62 KB
/
cfd_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# pylint: disable=g-bad-file-header
# Copyright 2020 DeepMind Technologies Limited. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Model for CylinderFlow."""
import sonnet as snt
import tensorflow.compat.v1 as tf
from meshgraphnets import common
from meshgraphnets import core_model
from meshgraphnets import normalization
class Model(snt.AbstractModule):
"""Model for fluid simulation."""
def __init__(self, learned_model, name='Model'):
super(Model, self).__init__(name=name)
with self._enter_variable_scope():
self._learned_model = learned_model
self._output_normalizer = normalization.Normalizer(
size=2, name='output_normalizer')
self._node_normalizer = normalization.Normalizer(
size=2+common.NodeType.SIZE, name='node_normalizer')
self._edge_normalizer = normalization.Normalizer(
size=3, name='edge_normalizer') # 2D coord + length
def _build_graph(self, inputs, is_training):
"""Builds input graph."""
# construct graph nodes
node_type = tf.one_hot(inputs['node_type'][:, 0], common.NodeType.SIZE)
node_features = tf.concat([inputs['velocity'], node_type], axis=-1)
# construct graph edges
senders, receivers = common.triangles_to_edges(inputs['cells'])
relative_mesh_pos = (tf.gather(inputs['mesh_pos'], senders) -
tf.gather(inputs['mesh_pos'], receivers))
edge_features = tf.concat([
relative_mesh_pos,
tf.norm(relative_mesh_pos, axis=-1, keepdims=True)], axis=-1)
mesh_edges = core_model.EdgeSet(
name='mesh_edges',
features=self._edge_normalizer(edge_features, is_training),
receivers=receivers,
senders=senders)
return core_model.MultiGraph(
node_features=self._node_normalizer(node_features, is_training),
edge_sets=[mesh_edges])
def _build(self, inputs):
graph = self._build_graph(inputs, is_training=False)
per_node_network_output = self._learned_model(graph)
return self._update(inputs, per_node_network_output)
@snt.reuse_variables
def loss(self, inputs):
"""L2 loss on velocity."""
graph = self._build_graph(inputs, is_training=True)
network_output = self._learned_model(graph)
# build target velocity change
cur_velocity = inputs['velocity']
target_velocity = inputs['target|velocity']
target_velocity_change = target_velocity - cur_velocity
target_normalized = self._output_normalizer(target_velocity_change)
# build loss
node_type = inputs['node_type'][:, 0]
loss_mask = tf.logical_or(tf.equal(node_type, common.NodeType.NORMAL),
tf.equal(node_type, common.NodeType.OUTFLOW))
error = tf.reduce_sum((target_normalized - network_output)**2, axis=1)
loss = tf.reduce_mean(error[loss_mask])
return loss
def _update(self, inputs, per_node_network_output):
"""Integrate model outputs."""
velocity_update = self._output_normalizer.inverse(per_node_network_output)
# integrate forward
cur_velocity = inputs['velocity']
return cur_velocity + velocity_update