-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
350 lines (302 loc) · 16.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import os
import shutil
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import argparse
import re
from helpers import makedir
import model
import push
import train_and_test as tnt
import save
from log import create_logger
from preprocess import mean, std, preprocess_input_function
from settings import NEPTUNE_API_TOKEN, max_num_cycles, masking_random_prob
import neptune.new as neptune
parser = argparse.ArgumentParser()
parser.add_argument('--experiment_run', type=str, default='001')
parser.add_argument('-gpuid', nargs=1, type=str, default='0') # python3 main.py -gpuid=0,1,2,3
parser.add_argument('--last_layer_num', type=int, default=-1)
parser.add_argument('--masking_type', type=str, default='none')
parser.add_argument('--sim_diff_weight_annealing', type=bool, default=False)
parser.add_argument('--sim_diff_function', type=str, default='l1')
parser.add_argument("--quantized_mask", type=bool, action=argparse.BooleanOptionalAction)
parser.set_defaults(quantized_mask=True)
parser.add_argument("--mixup", type=bool, action=argparse.BooleanOptionalAction)
parser.set_defaults(mixup=False)
parser.add_argument("--focal_sim", type=bool, action=argparse.BooleanOptionalAction)
parser.set_defaults(focal_sim=False)
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpuid[0]
# book keeping namings and code
from settings import base_architecture, img_size, prototype_shape, num_classes, \
prototype_activation_function, add_on_layers_type, results_dir, num_workers
base_architecture_type = re.match('^[a-z]*', base_architecture).group(0)
model_dir = os.path.join(results_dir, base_architecture, args.experiment_run) + '/'
makedir(model_dir)
shutil.copy(src=os.path.join(os.getcwd(), __file__), dst=model_dir)
shutil.copy(src=os.path.join(os.getcwd(), 'settings.py'), dst=model_dir)
shutil.copy(src=os.path.join(os.getcwd(), base_architecture_type + '_features.py'), dst=model_dir)
shutil.copy(src=os.path.join(os.getcwd(), 'model.py'), dst=model_dir)
shutil.copy(src=os.path.join(os.getcwd(), 'train_and_test.py'), dst=model_dir)
with open(os.path.join(model_dir, 'last_layer_num.txt'), 'w') as f:
f.write(str(args.last_layer_num))
log, logclose = create_logger(log_filename=os.path.join(model_dir, 'train.log'))
img_dir = os.path.join(model_dir, 'img')
makedir(img_dir)
weight_matrix_filename = 'outputL_weights'
prototype_img_filename_prefix = 'prototype-img'
prototype_self_act_filename_prefix = 'prototype-self-act'
proto_bound_boxes_filename_prefix = 'bb'
# load the data
from settings import train_dir, test_dir, train_push_dir, \
train_batch_size, test_batch_size, train_push_batch_size
normalize = transforms.Normalize(mean=mean,
std=std)
# all datasets
# train set
train_dataset = datasets.ImageFolder(
train_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=train_batch_size, shuffle=True,
num_workers=num_workers, pin_memory=False)
# push set
train_push_dataset = datasets.ImageFolder(
train_push_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
]))
train_push_loader = torch.utils.data.DataLoader(
train_push_dataset, batch_size=train_push_batch_size, shuffle=False,
num_workers=4, pin_memory=False)
# test set
test_dataset = datasets.ImageFolder(
test_dir,
transforms.Compose([
transforms.Resize(size=(img_size, img_size)),
transforms.ToTensor(),
normalize,
]))
test_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=test_batch_size, shuffle=False,
num_workers=4, pin_memory=False)
# we should look into distributed sampler more carefully at torch.utils.data.distributed.DistributedSampler(train_dataset)
# construct the model
ppnet = model.construct_PPNet(base_architecture=base_architecture,
pretrained=True, img_size=img_size,
prototype_shape=prototype_shape,
num_classes=num_classes,
prototype_activation_function=prototype_activation_function,
add_on_layers_type=add_on_layers_type,
last_layer_num=args.last_layer_num,
mixup=args.mixup,
focal_sim=args.focal_sim)
# if prototype_activation_function == 'linear':
# ppnet.set_last_layer_incorrect_connection(incorrect_strength=0)
ppnet = ppnet.cuda()
ppnet_multi = torch.nn.DataParallel(ppnet)
class_specific = True
# define optimizer
from settings import joint_optimizer_lrs, joint_lr_step_size
joint_optimizer_specs = \
[{'params': ppnet.features.parameters(), 'lr': joint_optimizer_lrs['features'], 'weight_decay': 1e-3},
# bias are now also being regularized
{'params': ppnet.add_on_layers.parameters(), 'lr': joint_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': ppnet.prototype_vectors, 'lr': joint_optimizer_lrs['prototype_vectors']},
]
joint_optimizer = torch.optim.Adam(joint_optimizer_specs)
joint_lr_scheduler = torch.optim.lr_scheduler.StepLR(joint_optimizer, step_size=joint_lr_step_size, gamma=0.1)
from settings import warm_optimizer_lrs
warm_optimizer_specs = \
[{'params': ppnet.add_on_layers.parameters(), 'lr': warm_optimizer_lrs['add_on_layers'], 'weight_decay': 1e-3},
{'params': ppnet.prototype_vectors, 'lr': warm_optimizer_lrs['prototype_vectors']},
]
warm_optimizer = torch.optim.Adam(warm_optimizer_specs)
from settings import last_layer_optimizer_lr
last_layer_optimizer_specs = [{'params': ppnet.last_layer.parameters(), 'lr': last_layer_optimizer_lr}]
last_layer_optimizer = torch.optim.Adam(last_layer_optimizer_specs)
# weighting of different training losses
from settings import coefs
# number of training epochs, number of warm epochs, push start epoch, push epochs
from settings import num_train_epochs, num_warm_epochs, push_start, push_epochs
if isinstance(NEPTUNE_API_TOKEN, str) and len(NEPTUNE_API_TOKEN) > 0:
log('initializing neptune')
neptune_run = neptune.init_run(
project='mikolajsacha/protobased-research',
name=args.experiment_run,
api_token=NEPTUNE_API_TOKEN,
tags=['local_prototypes']
)
params = {
"masking_type": args.masking_type,
"num_train_epochs": num_train_epochs,
"num_warm_epochs": num_warm_epochs,
"max_num_cycles": max_num_cycles,
"coefs": coefs,
"joint_optimizer_lrs": joint_optimizer_lrs,
"joint_optimizer_step_size": joint_lr_step_size,
"last_layer_optimizer_lr": last_layer_optimizer_lr,
"warm_optimizer_lrs": warm_optimizer_lrs,
"base_architecture": base_architecture,
"img_size": img_size,
"prototype_shape": prototype_shape,
"num_classes": num_classes,
"prototype_activation_function": prototype_activation_function,
"add_on_layers_type": add_on_layers_type,
"num_workers": num_workers,
"train_batch_size": train_batch_size,
"test_batch_size": test_batch_size,
"train_push_batch_size": train_push_batch_size,
"push_start": push_start,
"push_epochs": push_epochs,
'masking_random_prob': masking_random_prob,
'quantized_mask': args.quantized_mask,
'sim_diff_weight_annealing': args.sim_diff_weight_annealing,
'sim_diff_function': args.sim_diff_function,
}
neptune_run["parameters"] = params
else:
neptune_run = None
log('training set size: {0}'.format(len(train_loader.dataset)))
log('push set size: {0}'.format(len(train_push_loader.dataset)))
log('test set size: {0}'.format(len(test_loader.dataset)))
log('batch size: {0}'.format(train_batch_size))
log('start training')
max_accu_no_push = 0.0
max_accu_push = 0.0
max_accu_finetune = 0.0
n_cycle = 0
min_num_epochs = 20
if args.masking_type == 'random':
max_sim_diff_weight = coefs['sim_diff_random']
elif args.masking_type == 'high_act' or args.masking_type == 'high_act_aug':
max_sim_diff_weight = coefs['sim_diff_high_act']
else:
max_sim_diff_weight = 0.0
for epoch in range(num_train_epochs):
if args.sim_diff_weight_annealing:
sim_diff_weight = min(max_sim_diff_weight / min_num_epochs * epoch, max_sim_diff_weight)
else:
sim_diff_weight = max_sim_diff_weight
if neptune_run is not None:
neptune_run["train/sim_diff_weight"].append(sim_diff_weight)
if epoch < num_warm_epochs:
tnt.warm_only(model=ppnet_multi, log=log)
train_accu, converged, metrics = tnt.train(model=ppnet_multi, dataloader=train_loader, optimizer=warm_optimizer,
class_specific=class_specific, coefs=coefs, log=log,
masking_type=args.masking_type, neptune_run=neptune_run,
quantized_mask=args.quantized_mask, sim_diff_weight=sim_diff_weight,
sim_diff_function=args.sim_diff_function, mixup=args.mixup)
else:
tnt.joint(model=ppnet_multi, log=log)
joint_lr_scheduler.step()
train_accu, converged, metrics = tnt.train(model=ppnet_multi, dataloader=train_loader,
optimizer=joint_optimizer,
class_specific=class_specific, coefs=coefs, log=log,
masking_type=args.masking_type, neptune_run=neptune_run,
quantized_mask=args.quantized_mask, sim_diff_weight=sim_diff_weight,
sim_diff_function=args.sim_diff_function, mixup=args.mixup)
if neptune_run is not None:
neptune_run["train/epoch/accuracy"].append(train_accu)
neptune_run["train/epoch/stage"].append(0.0 if epoch < num_warm_epochs else 1.0)
neptune_run["train/epoch/converged"].append(float(int(converged)))
for key, val in metrics.items():
neptune_run[f"train/epoch/{key}"].append(float(val))
accu, _, metrics = tnt.test(model=ppnet_multi, dataloader=test_loader,
class_specific=class_specific, log=log, masking_type=args.masking_type,
neptune_run=neptune_run, quantized_mask=args.quantized_mask,
sim_diff_weight=sim_diff_weight, sim_diff_function=args.sim_diff_function)
if neptune_run is not None:
neptune_run["test/epoch/accuracy"].append(accu)
for key, val in metrics.items():
neptune_run[f"test/epoch/{key}"].append(float(val))
if accu > max_accu_no_push:
log(f"Cycle {n_cycle} - new best test accuracy: {accu:.2f}")
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name='nopush_best', accu=accu,
target_accu=0.10, log=log, cycle=n_cycle)
max_accu_no_push = accu
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name='nopush_last', accu=accu,
target_accu=0.10, log=log, cycle=n_cycle)
if epoch >= push_start and epoch in push_epochs:
push.push_prototypes(
train_push_loader, # pytorch dataloader (must be unnormalized in [0,1])
prototype_network_parallel=ppnet_multi, # pytorch network with prototype_vectors
class_specific=class_specific,
preprocess_input_function=preprocess_input_function, # normalize if needed
prototype_layer_stride=1,
root_dir_for_saving_prototypes=img_dir, # if not None, prototypes will be saved here
epoch_number=None, # if not provided, prototypes saved previously will be overwritten
prototype_img_filename_prefix=prototype_img_filename_prefix,
prototype_self_act_filename_prefix=prototype_self_act_filename_prefix,
proto_bound_boxes_filename_prefix=proto_bound_boxes_filename_prefix,
save_prototype_class_identity=True,
log=log)
accu, _, metrics = tnt.test(model=ppnet_multi, dataloader=test_loader,
class_specific=class_specific, log=log, masking_type=args.masking_type,
neptune_run=neptune_run, quantized_mask=args.quantized_mask,
sim_diff_weight=sim_diff_weight, sim_diff_function=args.sim_diff_function)
if accu > max_accu_push:
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name='push_best', accu=accu,
target_accu=0.10, log=log, cycle=n_cycle)
max_accu_push = accu
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name='push_last', accu=accu,
target_accu=0.10, log=log, cycle=n_cycle)
if prototype_activation_function != 'linear':
tnt.last_only(model=ppnet_multi, log=log)
for i in range(20):
# log('iteration: \t{0}'.format(i))
train_accu, converged, metrics = tnt.train(model=ppnet_multi, dataloader=train_loader,
optimizer=last_layer_optimizer,
class_specific=class_specific,
coefs=coefs, log=log, masking_type=args.masking_type,
neptune_run=neptune_run, quantized_mask=args.quantized_mask,
sim_diff_weight=sim_diff_weight,
sim_diff_function=args.sim_diff_function,
mixup=args.mixup)
if neptune_run is not None:
neptune_run["train/epoch/accuracy"].append(train_accu)
neptune_run["train/epoch/stage"].append(2.0)
neptune_run["train/epoch/converged"].append(float(int(converged)))
for key, val in metrics.items():
neptune_run[f"train/epoch/{key}"].append(float(val))
accu, _, metrics = tnt.test(model=ppnet_multi, dataloader=test_loader,
class_specific=class_specific, log=log, masking_type=args.masking_type,
neptune_run=neptune_run, quantized_mask=args.quantized_mask,
sim_diff_weight=sim_diff_weight, sim_diff_function=args.sim_diff_function)
if neptune_run is not None:
neptune_run["test/epoch/accuracy"].append(accu)
for key, val in metrics.items():
neptune_run[f"test/epoch/{key}"].append(float(val))
if accu > max_accu_finetune:
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name='push_finetune_best',
accu=accu, target_accu=0.10, log=log, cycle=n_cycle)
max_accu_finetune = accu
save.save_model_w_condition(model=ppnet, model_dir=model_dir, model_name='push_finetune_last',
accu=accu, target_accu=0.10, log=log, cycle=n_cycle)
if train_accu > 0.99 and converged and epoch > min_num_epochs:
print("EARLY STOPPING")
break
# reset metrics after each cycle
max_accu_no_push = 0.0
max_accu_push = 0.0
max_accu_finetune = 0.0
n_cycle += 1
if n_cycle >= max_num_cycles:
print("REACHED MAXIMUM NUMBER OF CYCLES ({})".format(max_num_cycles))
break
print()
print(f'{args.experiment_run} ACCURACIES: ')
print("nopush: {:.4f}".format(max_accu_no_push))
print("push: {:.4f}".format(max_accu_push))
print("push_finetune: {:.4f}".format(max_accu_finetune))
print()
logclose()
if neptune_run is not None:
neptune_run.stop()