-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels_simmim.py
487 lines (391 loc) · 19.2 KB
/
models_simmim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
# x = self.drop(x)
# comment out this for the orignal BERT implement
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
proj_drop=0., window_size=None, attn_head_dim=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
if window_size:
self.window_size = window_size
# cls to token & token to cls & cls to cls
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
else:
self.window_size = None
self.relative_position_bias_table = None
self.relative_position_index = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x, rel_pos_bias=None):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
if self.relative_position_bias_table is not None:
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if rel_pos_bias is not None:
attn = attn + rel_pos_bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x, attn
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
window_size=None, attn_head_dim=None):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if init_values is not None:
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x: torch.Tensor, rel_pos_bias=None, return_attention=False) -> torch.Tensor:
y, attention = self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias)
x_norm = torch.linalg.vector_norm(x, dim=2)
y_norm = torch.linalg.vector_norm(y, dim=2)
magnitudes = torch.stack((x_norm, y_norm), dim=0)
x = x + self.drop_path(self.gamma_1 * y)
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
if return_attention:
return x, attention, magnitudes
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, x, **kwargs):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
class RelativePositionBias(nn.Module):
def __init__(self, window_size, num_heads):
super().__init__()
self.window_size = window_size
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
self.relative_position_bias_table = nn.Parameter(
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# cls to token & token 2 cls & cls to cls
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(window_size[0])
coords_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += window_size[1] - 1
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = \
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
relative_position_index[0, 0:] = self.num_relative_distance - 3
relative_position_index[0:, 0] = self.num_relative_distance - 2
relative_position_index[0, 0] = self.num_relative_distance - 1
self.register_buffer("relative_position_index", relative_position_index)
def forward(self):
relative_position_bias = \
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1] + 1,
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
class VisionTransformerSimMIM(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
use_mean_pooling=True, init_scale=0.001):
super().__init__()
self.num_classes = num_classes
self.num_features = self.embed_dim = embed_dim
self.patch_size = patch_size
self.in_chans = in_chans
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
if use_abs_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
else:
self.pos_embed = None
self.pos_drop = nn.Dropout(p=drop_rate)
if use_shared_rel_pos_bias:
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
else:
self.rel_pos_bias = None
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.use_rel_pos_bias = use_rel_pos_bias
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None)
for i in range(depth)])
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim)
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity()
if self.pos_embed is not None:
self._trunc_normal_(self.pos_embed, std=.02)
self._trunc_normal_(self.cls_token, std=.02)
if num_classes > 0:
self._trunc_normal_(self.head.weight, std=.02)
self.apply(self._init_weights)
self.fix_init_weight()
if num_classes > 0:
self.head.weight.data.mul_(init_scale)
self.head.bias.data.mul_(init_scale)
def _trunc_normal_(self, tensor, mean=0., std=1.):
trunc_normal_(tensor, mean=mean, std=std)
def fix_init_weight(self):
def rescale(param, layer_id):
param.div_(math.sqrt(2.0 * layer_id))
for layer_id, layer in enumerate(self.blocks):
rescale(layer.attn.proj.weight.data, layer_id + 1)
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
self._trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
elif isinstance(m, nn.Conv2d):
self._trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def get_num_layers(self):
return len(self.blocks)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x, return_features: str = "cls", shuffle_subsets=None, return_block=12):
x = self.patch_embed(x)
batch_size, seq_len, _ = x.size()
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
x = torch.cat((cls_tokens, x), dim=1)
if self.pos_embed is not None:
x = x + self.pos_embed
x = self.pos_drop(x)
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
attentions = [] # !
magnitudes = [] # !
to_return = None
for i, blk in enumerate(self.blocks):
x, attn, magn = blk(x, rel_pos_bias=rel_pos_bias, return_attention=True) # !
calculate_attn_stuff(attn, magn, attentions, magnitudes) # !
if i == return_block:
to_return = x
if return_block is None or return_block >= len(self.blocks):
to_return = x
x_cls = to_return[:, 0]
x_pos = to_return[:, 1:].mean(dim=1)
if return_features == "cls":
ret = x_cls
elif return_features == "pos":
ret = x_pos
elif return_features == "raw":
ret = to_return
elif return_features == "both":
ret = torch.concat([x_cls, x_pos], dim=2)
else:
raise NotImplementedError(return_features)
attentions = torch.cat(attentions, dim=2) # kind, batch, blocks, heads, tokens
magnitudes = torch.cat(magnitudes, dim=2) # kind, batch, blocks, tokens
return ret, attentions, magnitudes
def forward(self, x: torch.Tensor, return_features: str = "cls", return_block=12) -> torch.Tensor:
if return_features.startswith("abmilp"):
return_features = "raw"
x, attn, magnitudes = self.forward_features(x, return_features=return_features, return_block=return_block)
x = self.head(x)
return x
def calculate_attn_stuff(attn, magn, attentions, magnitudes):
B, H, T, T = attn.shape
attn_range = torch.arange(T)
attn_diag = attn[:, :, attn_range, attn_range] # attention of tokens w.r.t. themselves
cls_all_attn = attn[:, :, 0, ] # attention of cls token to all tokens
all_cls_attn = attn[:, :, :, 0] # attention of all tokens to cls token
attn_wo_cls = attn[:, :, :, 1:]
attn_wo_cls_denom = attn_wo_cls.sum(dim=3, keepdim=True)
# print(attn_wo_cls_denom[0,0])
attn_wo_cls = attn_wo_cls / (attn_wo_cls_denom + 1e-6)
all_pos_attn_entropy = -(attn_wo_cls * (attn_wo_cls + 1e-6).log()).sum(dim=3)
attn_adj_for_cls = attn / (attn_wo_cls_denom + 1e-6)
attn_diag_adj_for_cls = attn_adj_for_cls[:, :, attn_range, attn_range]
attn_stats = torch.stack([attn_diag, attn_diag_adj_for_cls, cls_all_attn, all_cls_attn, all_pos_attn_entropy])
attn_stats = attn_stats.unsqueeze(2)
# assert False, attn_stats.shape
attentions.append(attn_stats.detach())
magnitudes.append(magn.unsqueeze(2).detach())
def build_vit(config):
model = VisionTransformerSimMIM(
img_size=config.DATA.IMG_SIZE,
patch_size=config.MODEL.VIT.PATCH_SIZE,
in_chans=config.MODEL.VIT.IN_CHANS,
num_classes=config.MODEL.NUM_CLASSES,
embed_dim=config.MODEL.VIT.EMBED_DIM,
depth=config.MODEL.VIT.DEPTH,
num_heads=config.MODEL.VIT.NUM_HEADS,
mlp_ratio=config.MODEL.VIT.MLP_RATIO,
qkv_bias=config.MODEL.VIT.QKV_BIAS,
drop_rate=config.MODEL.DROP_RATE,
drop_path_rate=config.MODEL.DROP_PATH_RATE,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
init_values=config.MODEL.VIT.INIT_VALUES,
use_abs_pos_emb=config.MODEL.VIT.USE_APE,
use_rel_pos_bias=config.MODEL.VIT.USE_RPB,
use_shared_rel_pos_bias=config.MODEL.VIT.USE_SHARED_RPB,
use_mean_pooling=config.MODEL.VIT.USE_MEAN_POOLING)
return model
def vit_base_pretrained(
checkpoint_path="simmim_pretrain__vit_base__img224__800ep.pth"
):
kwargs = {
'img_size': 224,
'patch_size': 16,
'in_chans': 3,
'num_classes': 1000,
'embed_dim': 768,
'depth': 12,
'num_heads': 12,
'mlp_ratio': 4.0,
'qkv_bias': True,
'drop_rate': 0.0,
'drop_path_rate': 0.1,
'norm_layer': partial(nn.LayerNorm, eps=1e-6),
'init_values': 0.1,
'use_abs_pos_emb': False,
'use_rel_pos_bias': False,
'use_shared_rel_pos_bias': True,
'use_mean_pooling': False
}
model = VisionTransformerSimMIM(**kwargs)
state_dict = torch.load(checkpoint_path)["model"]
state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items()}
try:
del state_dict["mask_token"]
del state_dict["decoder.0.bias"]
del state_dict["decoder.0.weight"]
except Exception as e:
print(e)
res = model.load_state_dict(state_dict, strict=False)
print(res)
return model
def vit_base_finetuned():
kwargs = {
'img_size': 224,
'patch_size': 16,
'in_chans': 3,
'num_classes': 1000,
'embed_dim': 768,
'depth': 12,
'num_heads': 12,
'mlp_ratio': 4.0,
'qkv_bias': True,
'drop_rate': 0.0,
'drop_path_rate': 0.1,
'norm_layer': partial(nn.LayerNorm, eps=1e-6),
'init_values': 0.1,
'use_abs_pos_emb': False,
'use_rel_pos_bias': True,
'use_shared_rel_pos_bias': False,
'use_mean_pooling': True
}
model = VisionTransformerSimMIM(**kwargs)
state_dict = torch.load("simmim_finetune__vit_base__img224__800ep.pth")["model"]
state_dict = {k.replace('encoder.', ''): v for k, v in state_dict.items()}
res = model.load_state_dict(state_dict)
print(res)
return model
vit_base_patch16 = vit_base_pretrained