-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_linprobe.py
394 lines (318 loc) · 16.6 KB
/
main_linprobe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.optim import SGD
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import timm
from torchvision.datasets import STL10
import models_simmim
# assert timm.__version__ == "0.3.2" # version check
# from timm.models.layers import trunc_normal_
import util.misc as misc
from abmilp import ABMILPHead
from models_vit import CLS_FT_CHOICES
from util.pos_embed import interpolate_pos_embed
from util.misc import NativeScalerWithGradNormCount as NativeScaler, AMP_PRECISIONS
from util.lars import LARS
from util.crop import RandomResizedCrop
import models_vit
from engine_finetune import train_one_epoch, evaluate
def get_args_parser():
parser = argparse.ArgumentParser('MAE linear probing for image classification', add_help=False)
parser.add_argument('--batch_size', default=512, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=90, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
parser.add_argument('--model', default='vit_large_patch16', type=str, metavar='MODEL',
help='Name of model to train')
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0,
help='weight decay (default: 0 for linear probe following MoCo v1)')
parser.add_argument('--optimizer', type=str, default="lars", choices=['lars', 'sgd'])
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=0.1, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# * Finetuning params
parser.add_argument('--finetune', default='',
help='finetune from checkpoint')
parser.add_argument("--cls_features",
choices=CLS_FT_CHOICES,
default="cls", help="cls token / positional tokens for classification")
parser.add_argument("--return_block", type=int, default=None)
parser.add_argument("--checkpoint_key", default="model", type=str)
# Dataset parameters
parser.add_argument('--data_path', default=Path('/datasets01/imagenet_full_size/061417/'), type=Path,
help='dataset path')
parser.add_argument('--nb_classes', default=1000, type=int,
help='number of the classification types')
parser.add_argument('--output_dir', default='./output_dir',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true',
help='Perform evaluation only')
parser.add_argument('--dist_eval', action='store_true', default=False,
help='Enabling distributed evaluation (recommended during training for faster monitor')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument("--dataloader_affinity_hack", "-dlah",
action='store_true',
help="See: https://github.com/pytorch/pytorch/issues/101850#issuecomment-1717363898")
parser.add_argument("--amp", default="float16", choices=list(AMP_PRECISIONS.keys()), type=str)
parser.add_argument("--no_cls_token", action='store_true', default=False,
help="Disable CLS token (e.g. for I-JEPA). You still have to select appropriate --cls_features"
)
parser.add_argument("--simmim", action="store_true", default=False)
parser.add_argument("--abmilp_act", choices=["tanh", "relu"], default="tanh",
help="abmilp activation function"
)
parser.add_argument("--abmilp_sa", choices=["none", "map", "both"], default="both",
help="how to apply the self-attention in abmilp"
)
parser.add_argument("--abmilp_depth", type=int, default=2, help="depth of abmilp head")
parser.add_argument("--abmilp_cond", type=str, choices=["none", "pe"],
help="what to condition abmilp with?")
parser.add_argument("--abmilp_content", type=str, choices=["all", "patch"], default="all")
parser.add_argument("--suffix", type=str, default="")
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# linear probe: weak augmentation
transform_train = transforms.Compose([
RandomResizedCrop(224, interpolation=3),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
transform_val = transforms.Compose([
transforms.Resize(256, interpolation=3),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
if "stl10" not in str(args.data_path):
dataset_train = datasets.ImageFolder(args.data_path / 'train', transform=transform_train)
dataset_val = datasets.ImageFolder(args.data_path / 'val', transform=transform_val)
else:
dataset_train = STL10(args.data_path, split="train", transform=transform_train, download=True)
dataset_val = STL10(args.data_path, split='test', transform=transform_val, download=True)
if args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
if args.dist_eval:
if len(dataset_val) % num_tasks != 0:
print('Warning: Enabling distributed evaluation with an eval dataset not divisible by process number. '
'This will slightly alter validation results as extra duplicate entries are added to achieve '
'equal num of samples per-process.')
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=True) # shuffle=True to reduce monitor bias
else:
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
else:
global_rank = 0
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
args.eff_batch_size = eff_batch_size
if global_rank == 0 and args.output_dir is not None and not args.eval:
misc.maybe_setup_wandb(
args.output_dir, args=args,
job_type="linprobe_v1", run_name_suffix=args.suffix
)
os.makedirs(args.output_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.output_dir)
else:
log_writer = None
def worker_init_fn(worker_id):
os.sched_setaffinity(0, range(os.cpu_count()))
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
worker_init_fn=worker_init_fn if args.dataloader_affinity_hack else None
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
worker_init_fn=worker_init_fn if args.dataloader_affinity_hack else None
)
if args.simmim:
model = models_simmim.__dict__[args.model](
checkpoint_path=args.finetune
)
else:
cls_kwargs = dict()
if "huge" in args.model:
cls_kwargs["class_token"] = not args.no_cls_token
model: models_vit.VisionTransformer = models_vit.__dict__[args.model](
num_classes=args.nb_classes,
**cls_kwargs
)
if args.finetune and not args.eval and not args.simmim:
if Path(args.finetune).exists():
print("Interpreting", args.finetune, "as path")
checkpoint_model = torch.load(args.finetune, map_location='cpu')[args.checkpoint_key]
else:
print("Interpreting", args.finetune, "as timm model")
from timm.models.vision_transformer import _create_vision_transformer
model_to_kwargs = {
"vit_tiny_patch16": dict(patch_size=16, embed_dim=192, depth=12, num_heads=12),
"vit_small_patch16": dict(patch_size=16, embed_dim=384, depth=12, num_heads=12),
"vit_base_patch16": dict(patch_size=16, embed_dim=768, depth=12, num_heads=12),
"vit_large_patch16": dict(patch_size=16, embed_dim=1024, depth=24, num_heads=16),
"vit_huge_patch14": dict(patch_size=14, embed_dim=1280, depth=32, num_heads=16),
}
model_kwargs = model_to_kwargs[args.model]
checkpoint_model = _create_vision_transformer(args.finetune, pretrained=True, **model_kwargs).state_dict()
state_dict = model.state_dict()
for k in ['head.weight', 'head.bias']:
if k in checkpoint_model and checkpoint_model[k].shape != state_dict[k].shape:
print(f"Removing key {k} from pretrained checkpoint")
del checkpoint_model[k]
# interpolate position embedding
try:
interpolate_pos_embed(model, checkpoint_model)
except Exception as e:
print("couldn't interpolate bc of", e)
print("Is [cls] switched off?", args.no_cls_token)
# load pre-trained model
msg = model.load_state_dict(checkpoint_model, strict=False)
print(msg)
assert all([
k.startswith("head") or k.startswith("oracle") or k.startswith("fc")
for k in msg.missing_keys
]), sorted(msg.missing_keys)
if args.cls_features.startswith("abmilp"):
abmilp = ABMILPHead(
dim=model.head.in_features,
self_attention_apply_to=args.abmilp_sa,
activation=args.abmilp_act,
depth=args.abmilp_depth,
cond=args.abmilp_cond,
content=args.abmilp_content,
num_patches=model.patch_embed.num_patches,
)
model.head = torch.nn.Sequential(
abmilp,
torch.nn.BatchNorm1d(model.head.in_features, affine=False, eps=1e-6),
model.head
)
else:
model.head = torch.nn.Sequential(torch.nn.BatchNorm1d(model.head.in_features, affine=False, eps=1e-6), model.head)
# freeze all but the head
for _, p in model.named_parameters():
p.requires_grad = False
for _, p in model.head.named_parameters():
p.requires_grad = True
model.to(device)
model_without_ddp = model
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params (M): %.2f' % (n_parameters / 1.e6))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
if args.optimizer == "lars":
optimizer = LARS(model_without_ddp.head.parameters(), lr=args.lr, weight_decay=args.weight_decay)
else:
optimizer = SGD(model_without_ddp.head.parameters(), lr=args.lr, weight_decay=args.weight_decay)
print(optimizer)
loss_scaler = NativeScaler()
criterion = torch.nn.CrossEntropyLoss()
print("criterion = %s" % str(criterion))
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
if args.eval:
test_stats = evaluate(data_loader_val, model, device)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
exit(0)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
train_stats = train_one_epoch(
model, criterion, data_loader_train,
optimizer, device, epoch, loss_scaler,
max_norm=None,
log_writer=log_writer,
args=args
)
test_stats = evaluate(data_loader_val, model, device, cls_features=args.cls_features, return_block=args.return_block)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,
'n_parameters': n_parameters}
if args.output_dir:
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp.head, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch, test_stats=log_stats, include_epoch_in_filename=False)
print(f"Accuracy of the network on the {len(dataset_val)} test images: {test_stats['acc1']:.1f}%")
max_accuracy = max(max_accuracy, test_stats["acc1"])
print(f'Max accuracy: {max_accuracy:.2f}%')
if log_writer is not None:
log_writer.add_scalar(f'test_v1_{args.cls_features}/train_acc1', train_stats['acc1'], epoch)
log_writer.add_scalar(f'test_v1_{args.cls_features}/train_loss', train_stats['loss'], epoch)
log_writer.add_scalar(f'test_v1_{args.cls_features}/test_acc1', test_stats['acc1'], epoch)
log_writer.add_scalar(f'test_v1_{args.cls_features}/test_acc5', test_stats['acc5'], epoch)
log_writer.add_scalar(f'test_v1_{args.cls_features}/test_loss', test_stats['loss'], epoch)
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)