-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrender.py
81 lines (69 loc) · 3.28 KB
/
render.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch
import numpy as np
from scene import Scene
import os
from tqdm import tqdm
from os import makedirs
from gaussian_renderer import render
import torchvision
from utils.general_utils import safe_state
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from models import gaussianModelRender
def modify_func(means3D: torch.Tensor, # num_gauss x 3, means3D[:,1] = 0
scales: torch.Tensor, # num_gauss x 3, scales[:,1] = eps
rotations: torch.Tensor, # # num_gauss x 4, 3D quaternions of 2D rotations
time: float):
return means3D, scales, rotations
def render_set( model_path,
iteration,
views,
gaussians,
pipeline,
background,
interp,
extension):
render_path = os.path.join(model_path, f"render")
makedirs(render_path, exist_ok=True)
for idx, view in enumerate(tqdm(views, desc="Rendering progress")):
for i in range(interp):
rendering = render(view, gaussians, pipeline, background, interp=interp, interp_idx=i, modify_func=modify_func)["render"].cpu()
torchvision.utils.save_image(rendering, os.path.join(render_path, '{0:05d}'.format(idx) + "_" + str(i) + extension))
def render_sets(dataset : ModelParams,
iteration : int,
pipeline : PipelineParams,
skip_train : bool,
skip_test : bool,
interp : int,
extension: str):
with torch.no_grad():
gaussians = gaussianModelRender['gs'](dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
render_set(dataset.model_path, scene.loaded_iter, scene.getTestCameras(), gaussians, pipeline, background, interp, extension)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=-1, type=int)
parser.add_argument('--camera', type=str, default="mirror")
parser.add_argument("--distance", type=float, default=1.0)
parser.add_argument("--num_pts", type=int, default=100_000)
parser.add_argument("--skip_train", action="store_false")
parser.add_argument("--skip_test", action="store_true")
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--poly_degree", type=int, default=1)
parser.add_argument("--interp", type=int, default=1)
parser.add_argument("--extension", type=str, default=".png")
args = get_combined_args(parser)
model.gs_type = "gs"
model.camera = args.camera
model.distance = args.distance
model.num_pts = args.num_pts
model.poly_degree = args.poly_degree
print("Rendering " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
render_sets(model.extract(args), args.iteration, pipeline.extract(args), args.skip_train, args.skip_test, args.interp, args.extension)