-
Notifications
You must be signed in to change notification settings - Fork 0
/
KerasGenerator.py
70 lines (55 loc) · 2.06 KB
/
KerasGenerator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import keras
import numpy as np
import librosa
from internal_methods import spectrogramFromFile
class SpectrogramGenerator(keras.utils.Sequence):
"Generates data for Keras"
def __init__(
self, list_IDs, label_map, sample_shape, batch_size=32, shuffle=True, sr=44100
):
"Initialization"
self.dim = sample_shape
self.batch_size = batch_size
self.labels = label_map
self.list_IDs = list_IDs
self.shuffle = shuffle
self.sr = sr
self.on_epoch_end()
def __len__(self):
"Denotes the number of batches per epoch"
return int(np.floor(len(self.list_IDs) / self.batch_size))
def __getitem__(self, index):
"Generate one batch of data"
# Generate indexes of the batch
indexes = self.indexes[index * self.batch_size : (index + 1) * self.batch_size]
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
# Generate data
X, y = self.__data_generation(list_IDs_temp)
return X, y
def on_epoch_end(self):
"Updates indexes after each epoch"
self.indexes = np.arange(len(self.list_IDs))
if self.shuffle == True:
np.random.shuffle(self.indexes)
def __data_generation(self, list_IDs_temp):
"Generates data containing batch_size samples" # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim))
y = np.empty((self.batch_size), dtype=int)
# Generate data
for i, ID in enumerate(list_IDs_temp):
# Store sample
X[i,] = self.preprocess_sample(ID)
# Store class
y[i] = self.labels[ID]
return X, y
def preprocess_sample(self, audio_path: str):
sr = self.sr
return spectrogramFromFile(
audio_filepath=audio_path,
sr=sr,
expand_last_dim=True,
pre_emphasis_coef=0.95,
use_normalization=True,
)