Skip to content

Commit 6b0ea9f

Browse files
committed
convert_hf_to_gguf.py: address review comments
1 parent 6317827 commit 6b0ea9f

File tree

1 file changed

+1
-19
lines changed

1 file changed

+1
-19
lines changed

convert_hf_to_gguf.py

Lines changed: 1 addition & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -2856,9 +2856,6 @@ class LLaDAModel(TextModel):
28562856
model_arch = gguf.MODEL_ARCH.LLADA
28572857
undo_permute = True
28582858

2859-
def __init__(self, *args, **kwargs):
2860-
super().__init__(*args, **kwargs)
2861-
28622859
def get_vocab_base(self) -> tuple[list[str], list[int], str]:
28632860
tokens: list[str] = []
28642861
toktypes: list[int] = []
@@ -2897,14 +2894,7 @@ def get_vocab_base(self) -> tuple[list[str], list[int], str]:
28972894
return tokens, toktypes, tokpre
28982895

28992896
def set_vocab(self):
2900-
try:
2901-
self._set_vocab_sentencepiece()
2902-
except FileNotFoundError:
2903-
try:
2904-
self._set_vocab_llama_hf()
2905-
except (FileNotFoundError, TypeError):
2906-
# Llama 3
2907-
self._set_vocab_gpt2()
2897+
self._set_vocab_gpt2()
29082898

29092899
def set_gguf_parameters(self):
29102900
super().set_gguf_parameters()
@@ -2942,14 +2932,6 @@ def set_gguf_parameters(self):
29422932
# LLaDA models use non-causal attention for diffusion, similar to Dream
29432933
self.gguf_writer.add_causal_attention(False)
29442934
# Handle RoPE scaling similar to LlamaModel and Dream
2945-
rope_scaling = self.hparams.get("rope_scaling") or {}
2946-
if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
2947-
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
2948-
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
2949-
elif rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
2950-
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
2951-
self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
2952-
self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
29532935

29542936
# Add LLaDA-specific parameters
29552937
mask_token_id = self.hparams.get("mask_token_id")

0 commit comments

Comments
 (0)