-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise5.v
244 lines (209 loc) · 5.47 KB
/
exercise5.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
From mathcomp Require Import mini_ssreflect.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
(**
----------------------------------------------------------
#<div class="slide">#
** Exercise 1:
- Improve the last symplification function of lesson 5 by adding
the simplification rule #$$x - 0 = x$$#
#<div>#
*)
Module Ex1.
Inductive expr :=
| Zero
| Minus (x : expr) (y : expr)
| Var (n : nat).
Fixpoint simplify e :=
match e with
| Minus x y =>
match simplify x, simplify y with
| Var n, Var m =>
match n == m with
| true => Zero
| false => Minus (Var n) (Var m)
end
| (* Fill me *)
(*D*) a, Zero => a
| a, b => Minus a b
end
| y => y
end.
Fixpoint interp (e : expr) (c : list nat) :=
match e with
| Zero => 0
| Minus x y => (interp x c) - (interp y c)
| Var x => nth 0 c x
end.
Lemma simplify_correct (e : expr) (c : list nat) : interp e c = interp (simplify e) c.
Proof.
elim: e => //= x Hx y Hy.
case: (simplify x) Hx => [|x1 x2|n] -> ; case: (simplify y) Hy => [|y1 y2|m] -> //.
(* fill in *)
(*D*)1,2: by rewrite subn0.
by case: eqP => [->|//]; rewrite subnn.
Qed.
Lemma test (x : nat) : x - (x - x) = x.
Proof.
pose AST : expr := Minus (Var 0) (Minus (Var 0) (Var 0)).
pose CTX : list nat := [:: x].
rewrite -[LHS]/(interp AST CTX).
rewrite simplify_correct.
rewrite /=.
by [].
Qed.
End Ex1.
(**
#</div>#
----------------------------------------------------------
#<div class="slide">#
** Exercise 2:
- Improve on exercise 1 by adding
to the [expr] inductive type a constructor for multiplication and
the simplification rules #$$x * 0 = 0$$# and #$$0 * x = 0$$#
#<div>#
*)
Module Ex2.
Inductive expr :=
| Zero
| (* fill in *)
(*D*) Mult (x : expr) (y : expr)
| Minus (x : expr) (y : expr)
| Var (n : nat).
Fixpoint simplify e :=
match e with
| Minus x y =>
match simplify x, simplify y with
| Var n, Var m =>
match n == m with
| true => Zero
| false => Minus (Var n) (Var m)
end
| (* Fill me, from ex 1*)
(*D*) a, Zero => a
| a, b => Minus a b
end
| (* fill me *)
(*D*) Mult x y =>
(*D*) match simplify x, simplify y with
(*D*) | Zero, _ => Zero
(*D*) | _, Zero => Zero
(*D*) | a, b => Mult a b
(*D*) end
| y => y
end.
Fixpoint interp (e : expr) (c : list nat) :=
match e with
| Zero => 0
| Minus x y => (interp x c) - (interp y c)
| (* fill in *)
(*D*) Mult x y => (interp x c) * (interp y c)
| Var x => nth 0 c x
end.
Lemma simplify_correct (e : expr) (c : list nat) : interp e c = interp (simplify e) c.
Proof.
elim: e => //= x Hx y Hy.
- case: (simplify x) Hx => [|x1 x2|x1 x2|n] -> ; case: (simplify y) Hy => [|y1 y2|y1 y2|m] -> //.
(* fill in *)
(*D*) 1,2,3: by rewrite muln0.
- case: (simplify x) Hx => [|x1 x2|x1 x2|n] -> ; case: (simplify y) Hy => [|y1 y2|y1 y2|m] -> //.
(* fill in, like in exercise 1 *)
(*D*) 1,2,3: by rewrite subn0.
by case: eqP => [->|//]; rewrite subnn.
Qed.
Lemma test (x : nat) (y : nat) : x - x - (y * 0) = 0.
Proof.
pose AST : expr := (* fill me *)
(*D*)Minus (Minus (Var 0) (Var 0)) (Mult (Var 1) Zero).
pose CTX : list nat := (* fill me *)
(*D*)[:: x; y].
rewrite -[LHS]/(interp AST CTX).
rewrite simplify_correct.
rewrite /=.
by [].
Qed.
End Ex2.
(**
#</div>#
----------------------------------------------------------
#<div class="slide">#
** Exercise 3:
- Improve on exercise 2 by adding
to the [expr] data type a constructor for [One] and
the simplification rules #$$x * 1 = x$$# and #$$1 * x = x$$#
#<div>#
*)
Module Ex3.
Inductive expr :=
| Zero
| (* fill in *)
(*D*) One
| (* fill in, as in exercise 2 *)
(*D*) Mult (x : expr) (y : expr)
| Minus (x : expr) (y : expr)
| Var (n : nat).
Fixpoint simplify e :=
match e with
| Minus x y =>
match simplify x, simplify y with
| Var n, Var m =>
match n == m with
| true => Zero
| false => Minus (Var n) (Var m)
end
| (* Fill me, from ex 1*)
(*D*) a, Zero => a
| a, b => Minus a b
end
| (* fill me *)
(*D*) Mult x y =>
(*D*) match simplify x, simplify y with
(*D*) | Zero, _ => Zero
(*D*) | _, Zero => Zero
(*D*) | One, b => b
(*D*) | a, One => a
(*D*) | a, b => Mult a b
(*D*) end
| y => y
end.
Fixpoint interp (e : expr) (c : list nat) :=
match e with
| Zero => 0
| (* fill in *)
(*D*) One => 1
| Minus x y => (interp x c) - (interp y c)
| (* fill in *)
(*D*) Mult x y => (interp x c) * (interp y c)
| Var x => nth 0 c x
end.
Lemma simplify_correct (e : expr) (c : list nat) : interp e c = interp (simplify e) c.
Proof.
elim: e => //= x Hx y Hy.
- case: (simplify x) Hx => [||x1 x2|x1 x2|n] -> ; case: (simplify y) Hy => [||y1 y2|y1 y2|m] -> //.
(* fill in *)
(*D*) 1,2,3: by rewrite mul1n.
(*D*) 1,3,5: by rewrite muln0.
(*D*) 1,2,3: by rewrite muln1.
- case: (simplify x) Hx => [||x1 x2|x1 x2|n] -> ; case: (simplify y) Hy => [||y1 y2|y1 y2|m] -> //.
(* fill in *)
(*D*) 1,2,3: by rewrite subn0.
(*D*) by case: eqP => [->|//]; rewrite subnn.
Qed.
Lemma test (x : nat) (y : nat) : x - (x * 1) - (y * 0) = 0.
Proof.
pose AST : expr := (* fill me *)
(*D*)Minus (Minus (Var 0) (Mult (Var 0) One)) (Mult (Var 1) Zero).
pose CTX : list nat := (* fill me *)
(*D*)[:: x; y].
rewrite -[LHS]/(interp AST CTX).
rewrite simplify_correct.
rewrite /=.
by [].
Qed.
End Ex3.
(*
#</div>#
#</div>#
----------------------------------------------------------
*)