@@ -231,7 +231,7 @@ gap> A:=[3,Rationals,12,[[2,5,3],[2,7,0]],[[3]]];
231
231
gap> RootOfDimensionOfCyclotomicAlgebra(A);
232
232
12
233
233
234
- # doc/div-alg.xml:739-758
234
+ # doc/div-alg.xml:739-757
235
235
236
236
gap> G:= SmallGroup(48 ,15 );
237
237
< pc group of size 48 with 5 generators>
@@ -249,7 +249,7 @@ gap> SimpleComponentOfGroupRingByCharacter(Rationals,G,n)
249
249
> ;# Note:this cyclotomic algebra is isomorphic to the other by a change of basis.
250
250
[ 1 , Rationals, 12 , [ [ 2 , 5 , 3 ] , [ 2 , 7 , 0 ] ] , [ [ 3 ] ] ]
251
251
252
- # doc/div-alg.xml:773-784
252
+ # doc/div-alg.xml:772-783
253
253
254
254
gap> G:= SmallGroup(48 ,16 );
255
255
< pc group of size 48 with 5 generators>
@@ -260,7 +260,7 @@ gap> LocalIndexAtInftyByCharacter(CF(3),G,Irr(G)[i]);
260
260
1
261
261
262
262
263
- # doc/div-alg.xml:817-833
263
+ # doc/div-alg.xml:816-832
264
264
265
265
gap> G:= SmallGroup(72 ,21 );
266
266
< pc group of size 72 with 5 generators>
@@ -276,7 +276,7 @@ false
276
276
gap> DefectOfCharacterAtP(G,Irr(G)[ i] ,3 );
277
277
2
278
278
279
- # doc/div-alg.xml:875-888
279
+ # doc/div-alg.xml:874-887
280
280
281
281
gap> G:= SmallGroup(80 ,28 );
282
282
< pc group of size 80 with 5 generators>
@@ -289,7 +289,7 @@ gap> LocalIndexAtPByBrauerCharacter(Rationals,G,i,5);
289
289
gap> FinFieldExt(Rationals,G,5 ,i,9 );
290
290
2
291
291
292
- # doc/div-alg.xml:890-900
292
+ # doc/div-alg.xml:889-899
293
293
294
294
gap> G:= SmallGroup(72 ,20 );
295
295
< pc group of size 72 with 5 generators>
@@ -299,7 +299,7 @@ gap> LocalIndexAtPByBrauerCharacter(Rationals,G,Irr(G)[i],3);
299
299
gap> LocalIndexAtPByBrauerCharacter(Rationals,G,i,2 );
300
300
1
301
301
302
- # doc/div-alg.xml:944-956
302
+ # doc/div-alg.xml:943-955
303
303
304
304
gap> G:= SmallGroup(48 ,15 );
305
305
< pc group of size 48 with 5 generators>
@@ -311,7 +311,7 @@ gap> LocalIndexAtTwoByCharacter(Rationals,G,Irr(G)[i]);
311
311
gap> LocalIndexAtTwoByCharacter(CF(3 ),G,Irr(G)[ i] );
312
312
1
313
313
314
- # doc/div-alg.xml:1011-1030
314
+ # doc/div-alg.xml:1010-1029
315
315
316
316
gap> LocalIndicesOfRationalSymbolAlgebra(- 1 ,- 1 );
317
317
[ [ infinity, 2 ] , [ 2 , 2 ] ]
@@ -330,7 +330,7 @@ gap> A:=QuaternionAlgebra(CF(5),3,-2);
330
330
gap> LocalIndicesOfRationalQuaternionAlgebra(A);
331
331
fail
332
332
333
- # doc/div-alg.xml:1056-1071
333
+ # doc/div-alg.xml:1055-1070
334
334
335
335
gap> A:= QuaternionAlgebra(Rationals,- 30 ,- 15 );
336
336
< algebra- with- one of dimension 4 over Rationals>
@@ -345,7 +345,7 @@ false
345
345
gap> LocalIndicesOfRationalQuaternionAlgebra(A);
346
346
[ ]
347
347
348
- # doc/div-alg.xml:1122-1135
348
+ # doc/div-alg.xml:1121-1134
349
349
350
350
gap> G:= SmallGroup(96 ,35 );
351
351
< pc group of size 96 with 6 generators>
@@ -358,7 +358,7 @@ gap> DecomposeCyclotomicAlgebra(A);
358
358
[ [ NF(8 ,[ 1 , 7 ] ), CF(8 ), [ - 1 ] ] ,
359
359
[ NF(8 ,[ 1 , 7 ] ), NF(24 ,[ 1 , 7 ] ), [ E(8 )+ 2 * E(8 )^ 2 + E(8 )^ 3 ] ] ]
360
360
361
- # doc/div-alg.xml:1159-1177
361
+ # doc/div-alg.xml:1158-1176
362
362
363
363
gap> A:= [ NF(24 ,[ 1 ,11 ] ),CF(24 ),[ - 1 ]] ;
364
364
[ NF(24 ,[ 1 , 11 ] ), CF(24 ), [ - 1 ] ]
376
376
gap> b[ 2 ] * b[ 3 ] + b[ 3 ] * b[ 2 ] ;
377
377
0 * e
378
378
379
- # doc/div-alg.xml:1204-1224
379
+ # doc/div-alg.xml:1203-1223
380
380
381
381
gap> A:= QuaternionAlgebra(CF(5 ),- 3 ,- 1 );
382
382
< algebra- with- one of dimension 4 over CF(5 )>
0 commit comments