Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

onnx模型 #65

Open
5p6 opened this issue Feb 29, 2024 · 4 comments
Open

onnx模型 #65

5p6 opened this issue Feb 29, 2024 · 4 comments

Comments

@5p6
Copy link

5p6 commented Feb 29, 2024

请问如何将igev模型的结构和权重转成onnx模型?

@5p6
Copy link
Author

5p6 commented Feb 29, 2024

如果可以,能否提供一下模型转换为onnx的代码?

@zhengshunkai
Copy link

+1

@HubertBlach
Copy link

below you can see an example of code that I use for conversion to onnx in CPU

make sure that the input_tensor is a multiplication of 64, lmk if you need a docker for the conversion environment

from core.igev_stereo import IGEVStereo
import torch
import argparse

from torchsummary import summary
import torchvision
# from tensorflow.python.compiler.tensorrt import trt_convert as trt

import argparse

class Args:
    def __init__(self):
        self.restore_ckpt = './pretrained_models/sceneflow/sceneflow.pth'
        self.save_numpy = False
        self.left_imgs = "./demo-imgs/*/im0.png"
        self.right_imgs = "./demo-imgs/*/im1.png"
        self.output_directory = "./demo-output/"
        self.mixed_precision = False
        self.valid_iters = 32
        self.hidden_dims = [128, 128, 128]
        self.corr_implementation = "reg"
        self.shared_backbone = False
        self.corr_levels = 2
        self.corr_radius = 4
        self.n_downsample = 2
        self.slow_fast_gru = False
        self.n_gru_layers = 3
        self.max_disp = 192

# Create an instance of the args class
args = Args()

model = torch.nn.DataParallel(IGEVStereo(args), device_ids=[0])
model = model.eval()
input_tensor = torch.randn(1, 3, 256, 256)  # Example input shape (batch_size, channels, height, width)

# Scale the tensor to be in the range [0, 255]
scaled_tensor = (input_tensor - input_tensor.min()) / (input_tensor.max() - input_tensor.min()) * 255

# Convert the tensor to float32
scaled_tensor = scaled_tensor.float()

# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# input_tensor = input_tensor.to(device)
model = model.to("cpu")

print(summary(model))

scaled_tensor = scaled_tensor.to("cpu")

torch.onnx.export(model.module,                     # PyTorch model
                  (scaled_tensor,scaled_tensor),             # Example input tensor
                  "model2.onnx",         # Output ONNX file path
                  input_names=['input'],    # Input names used in the ONNX model
                  output_names=['output'],  # Output names used in the ONNX model
                  export_params=True,
                  opset_version= 16,
                  verbose=True)  

@5p6
Copy link
Author

5p6 commented Jun 24, 2024

below you can see an example of code that I use for conversion to onnx in CPU

make sure that the input_tensor is a multiplication of 64, lmk if you need a docker for the conversion environment

from core.igev_stereo import IGEVStereo
import torch
import argparse

from torchsummary import summary
import torchvision
# from tensorflow.python.compiler.tensorrt import trt_convert as trt

import argparse

class Args:
    def __init__(self):
        self.restore_ckpt = './pretrained_models/sceneflow/sceneflow.pth'
        self.save_numpy = False
        self.left_imgs = "./demo-imgs/*/im0.png"
        self.right_imgs = "./demo-imgs/*/im1.png"
        self.output_directory = "./demo-output/"
        self.mixed_precision = False
        self.valid_iters = 32
        self.hidden_dims = [128, 128, 128]
        self.corr_implementation = "reg"
        self.shared_backbone = False
        self.corr_levels = 2
        self.corr_radius = 4
        self.n_downsample = 2
        self.slow_fast_gru = False
        self.n_gru_layers = 3
        self.max_disp = 192

# Create an instance of the args class
args = Args()

model = torch.nn.DataParallel(IGEVStereo(args), device_ids=[0])
model = model.eval()
input_tensor = torch.randn(1, 3, 256, 256)  # Example input shape (batch_size, channels, height, width)

# Scale the tensor to be in the range [0, 255]
scaled_tensor = (input_tensor - input_tensor.min()) / (input_tensor.max() - input_tensor.min()) * 255

# Convert the tensor to float32
scaled_tensor = scaled_tensor.float()

# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# input_tensor = input_tensor.to(device)
model = model.to("cpu")

print(summary(model))

scaled_tensor = scaled_tensor.to("cpu")

torch.onnx.export(model.module,                     # PyTorch model
                  (scaled_tensor,scaled_tensor),             # Example input tensor
                  "model2.onnx",         # Output ONNX file path
                  input_names=['input'],    # Input names used in the ONNX model
                  output_names=['output'],  # Output names used in the ONNX model
                  export_params=True,
                  opset_version= 16,
                  verbose=True)  

Thank you for your code. Could you please demonstrate how to use the ONNX model's code?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants