-
Notifications
You must be signed in to change notification settings - Fork 9
/
density_nice_plot.py
179 lines (150 loc) · 5.32 KB
/
density_nice_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import numpy as np
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
#from gr_bound import *
import pandas as pd
#data2=np.loadtxt('test001_gamma.csv',skiprows=1,delimiter=',')
#SPECIAL FOR DENS
path1 = 'C:\\Users\\obeli\\Documents\\GitHub\\Transform2020_2\\t20-litho_boundary_from_gamma\\'
#dataraw=pd.read_csv('2_geophys.csv',delimiter=',')
dataraw=dataraw[dataraw['HOLEID']=='test001']
dataraw=dataraw[~np.isnan(dataraw['DENB_g_cc'])]
data2=dataraw[['DEPTH','DENB_g_cc']].values
data2[:,0]=data2[:,0]*-1.0
dtraw=data2[1,0]-data2[0,0]
dep=np.arange(np.min(data2[:,0]),np.max(data2[:,0]),dtraw)
#SPECIAL FOR DENS
#data2[:,0]=data2[:,0]*-1.0
data=data2[np.arange(0,data2.shape[0],10),:]
dt=data[1,0]-data[0,0]
dep=data[:,0]
#syntwave=data[:,1]
syntwave=savgol_filter(data[:,1], 51, 3)
fscales = np.arange(1, 100,1)
syntwave=(syntwave-np.mean(syntwave))/np.std(syntwave)
thres =0.5 # sample cut threshold per std
curve=syntwave
#[bo,bos,mosaic3,frequencies]=gr_bound(dep,syntwave,fscales,thres)
import pywt
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
wavelet = 'gaus2'
dt=dep[1]-dep[0]
[cfs, frequencies] = pywt.cwt(curve, fscales, wavelet, dt)
#power = (abs(cfs)) ** 2
zcwt=cfs.T
#period = 1. / frequencies
#lev_contour=np.arange(np.min(zcwt),np.max(zcwt),7)
wavelet2 = 'gaus1'
[cfs, frequencies] = pywt.cwt(curve, fscales, wavelet2, dt)
#power = (abs(cfs)) ** 2
zcwt2=cfs.T
#period = 1. / frequencies
fig, (ax1, ax2,ax3) = plt.subplots(1,3,figsize=(8, 6))
ax1.plot(curve,dep)
ax1.set_ylim([np.min(dep),np.max(dep)])
ax1.invert_yaxis()
cs=ax2.contour(fscales,dep,zcwt,levels=[0.0], colors='k',extend='both')
ax2.invert_yaxis()
ax2.contourf(fscales,dep,zcwt2,levels=np.arange(np.min(zcwt),np.max(zcwt),1),
cmap="RdBu_r", extend='both')
#boundary
#get 0 level
thres=0.8 #percent from std threshold
x0=np.array([])
y0=np.array([])
i0=np.array([])
id0=0
ncdat=np.zeros([len(cs.allsegs[0])])
for i in range(0,len(cs.allsegs[0])):
ncdat[i]=len(cs.allsegs[0][i])
for i in range(0,len(cs.allsegs[0])):
if len(cs.allsegs[0][i])>(np.std(ncdat)*thres):
dat0= cs.allsegs[0][i]
y0 = np.hstack((y0, dat0[:,0]))
x0 = np.hstack((x0, dat0[:,1]))
i0 = np.hstack((i0, np.ones([len(dat0[:,1])])*id0))
id0=id0+1
x0=x0-np.min(dep)
#x0[x0<0]=x0[x0<0]*-1.0
#rescale to a array position scale (to call the zcwt2)
x02=x0/dt
y02=(y0-np.min(y0))/(np.max(y0)-np.min(y0))*(len(fscales)-1)
z0=np.zeros([x0.shape[0]],dtype=float)
for i in range(z0.shape[0]):
# if int(np.floor(x02[i])) < (zcwt2.shape[0]):
z0[i]=zcwt2[int(np.floor(x02[i])),int(np.floor(y02[i]))]
#getting the boundary
bo=np.array([])
for i in range(0,id0):
locmax=np.where(z0 == np.max(z0[i0==i]))[0][0]
locmin=np.where(z0 == np.min(z0[i0==i]))[0][0]
if z0[locmax]>0.0:
if i==0 and bo.shape[0]==0:
bo=np.hstack((bo, [x02[locmax],y02[locmax],z0[locmax]]))
else:
bo=np.vstack((bo, [x02[locmax],y02[locmax],z0[locmax]]))
if z0[locmin]<0.0:
if i==0 and bo.shape[0]==0:
bo=np.hstack((bo, [x02[locmin],y02[locmin],z0[locmin]]))
else:
bo=np.vstack((bo, [x02[locmin],y02[locmin],z0[locmin]]))
bo=bo[bo[:,0].argsort()]
ax2.plot((bo[:,1]/fscales.shape[0])*(np.max(fscales)-np.min(fscales))+np.min(fscales),(bo[:,0])*dt+np.min(dep),'wo',markersize=5,markeredgecolor='y')
ax2.yaxis.set_visible(False)
#calculate the boundary strength & getting the signal polarity
bos=np.zeros([len(dep),2],dtype=float)
for i in range(0,bo.shape[0]):
bos[int(np.round(bo[i,0])),0]=np.abs(bo[i,2])/np.max(np.abs(bo[:,2]))
bos[int(np.round(bo[i,0])),1]=np.sign(curve[int(np.round(bo[i,0]))])
data=bos
mosaic=np.zeros([data.shape[0],100],dtype=int)*np.nan
colnum=1000
colrange=np.linspace(0,colnum,data.shape[0],dtype=int)
for i in range(0,data.shape[0]):
if data[i,0] != 0.0:
mosaic[i,0:int(np.floor(data[i,0]*100.0))]=colrange[i]
for i in range(0,data.shape[0]):
if ~np.isnan(mosaic[i,0]):
for j in range(0,100):
if np.isnan(mosaic[i,j]):
fl=i
while True:
mosaic[fl,j-1]=mosaic[i,0]
fl=fl-1
if fl<0 or ~np.isnan(mosaic[fl,j-1]):
break
break
for i in range(0,data.shape[0]):
if ~np.isnan(mosaic[i,0]):
for j in range(0,100):
if np.isnan(mosaic[i,j]):
fl=i+1
while True:
mosaic[fl,j-1]=mosaic[i,0]+2
fl=fl+1
if fl>data.shape[0]-1 or ~np.isnan(mosaic[fl,j-1]):
break
break
mosaic[0:np.where(data[:,0]==1.0)[0][0],99]=100.0
mosaic[np.where(data[:,0]==1.0)[0][0]:,99]=mosaic[np.where(data[:,0]==1.0)[0][0],0]
mosaic2=mosaic
pdmos=pd.DataFrame(mosaic)
pdmos=pdmos.T
pdmos=pdmos.fillna(method='bfill').T
mosaic=pdmos.values
mosaic3=mosaic[np.arange(0,data.shape[0],10),:]
x=np.where(~np.isnan(mosaic2))[0][:]
x=np.floor(x/10).astype(int)
y=np.where(~np.isnan(mosaic2))[1][:]
grids=np.zeros([mosaic3.shape[0],100])*np.nan
grids[x,y]=1.0
#ax3.barh(dep,bos[:,0])
#ax3.set_ylim([np.min(dep),np.max(dep)])
#ax3.invert_yaxis()
#ax3.set_aspect('auto')
ax3.imshow(mosaic3,cmap='Spectral_r')
ax3.imshow(grids,interpolation='none')
ax3.set_aspect('auto')
ax3.yaxis.set_visible(False)