-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_gedi_text2.py
652 lines (526 loc) · 29.1 KB
/
train_gedi_text2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
# flickrstyle10k
import argparse
import json
import logging
import os
import torch.nn as nn
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm, trange
import sys
from transformers import AdamW, get_linear_schedule_with_warmup, GPT2Config, GPT2Tokenizer
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_output_modes as output_modes
from transformers import glue_processors as processors
from modeling_gpt2 import GPT2LMHeadModel
from utils import ClipCocoDataset, ClipCaptionModel, set_seed, noise_injection, add_sep, eval_ppl, eval_acc
import clip
from clipscore.eval_clip import computer_clipscore_and_other
try:
from torch.utils.tensorboard import SummaryWriter
except ImportError:
from tensorboardX import SummaryWriter
logger = logging.getLogger(__name__)
MODEL_CLASSES = {"gpt2": (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer)}
def train(args, train_dataset, model, tokenizer):
""" Train the model """
tb_writer = SummaryWriter()
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
model = model.to(args.device)
model.train()
# Check if saved optimizer or scheduler states exist
if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(
os.path.join(args.model_name_or_path, "scheduler.pt")
):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt")))
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(
" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size
* args.gradient_accumulation_steps
* 1,
)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
epochs_trained = 0
steps_trained_in_current_epoch = 0
# Check if continuing training from a checkpoint
if os.path.exists(args.model_name_or_path):
# set global_step to gobal_step of last saved checkpoint from model path
global_step = int(args.model_name_or_path.split("-")[-1].split("/")[0])
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch)
train_iterator = trange(
epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=False,
)
set_seed(args) # Added here for reproductibility
pt_id = tokenizer.encode(args.code_1)[0]
nt_id = tokenizer.encode(args.code_0)[0]
for epoch_ in train_iterator:
model.zero_grad()
epoch_iterator = train_dataloader
overall_gen_loss = 0
eval_loss = 0
loss_epoch = 0
num_loss = 0
for step, (tokens, mask, prefix, style_token, label) in enumerate(epoch_iterator):
# Skip past any already trained steps if resuming training
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
tokens, mask, label = tokens.to(args.device), mask.to(args.device), label.to(args.device)
prefix = prefix.to(args.device, dtype=torch.float32)
if args.do_norm:
prefix = prefix / prefix.norm(2, -1, keepdim=True)
prefix = noise_injection(prefix, args.variance, modality_offset=None, uniform_noise=False, dont_norm=False)
style_token = style_token.view(-1, 1).type_as(tokens)
# batch_0 = add_sep(batch, tokenizer.encode('<sep>')) if args.add_sep else tokens
weight = (style_token == pt_id).type_as(style_token).view(-1,1).to(args.device)
seq_a = pt_id * weight + nt_id * (1-weight)
seq_b = nt_id * weight + pt_id * (1-weight)
seq_a = torch.cat((seq_a, tokens), dim=1)[:,:-1]
seq_b = torch.cat((seq_b, tokens), dim=1)[:,:-1]
bsz = seq_a.shape[0]
seq_batched = torch.cat((seq_a,seq_b),dim=0)
# 更新前缀
prefix = (torch.cat((prefix, prefix), dim=0))
# 更新mask
mask = mask[:, :-1].to(torch.float32).to(args.device) # mask,加入T/F和style的mask
left_ = torch.ones(mask.shape[0], 1).type_as(mask)
mask = torch.cat((left_, mask), dim=1)
mask = (torch.cat((mask, mask), dim=0))
# 输入到模型中
outputs = model(seq_batched, prefix, mask)
losses = outputs[0].view(seq_batched.shape[0], -1)
#loss mask includes first padded token
if args.mask_eos_token:
loss_mask = mask[:,train_dataset.prefix_length+1:-1].to(torch.float16)
if args.add_sep:
raise NotImplementedError
else:
loss_mask = mask[:,train_dataset.prefix_length:-1].to(torch.float32)
#appending with ones to account for the control code token being added
if args.add_sep:
#adding the sep token would require extending the loss mask of ones by one position to the right (equivalent to prepending one on the left)
left_ = torch.ones(loss_mask.shape[0],2).type_as(loss_mask)
loss_mask = torch.cat((left_, loss_mask[:,:-1]), dim=1)
loss_lengths = torch.sum(loss_mask,1,keepdim=True)
loss_lengths_a, loss_lengths_b = torch.split(loss_lengths, bsz, dim=0)
loss_a,loss_b=torch.split(losses, bsz, dim=0)
mask_a, mask_b = torch.split(loss_mask, bsz, dim=0)
loss_a = loss_a * mask_a
loss_b = loss_b * mask_b
gen_loss_a = (label==1).to(torch.float32).unsqueeze(1)*loss_a/loss_lengths_a
gen_loss_b = (label==0).to(torch.float32).unsqueeze(1)*loss_b/loss_lengths_b
gen_loss = torch.sum(gen_loss_a+gen_loss_b)/bsz
if args.sum_loss:
loss_a = loss_a.sum(dim=1)
loss_b= loss_b.sum(dim=1)
else:
loss_a = (loss_a/loss_lengths_a).sum(dim=1)
loss_b= (loss_b/loss_lengths_b).sum(dim=1)
class_logits = torch.stack((-loss_b, -loss_a), dim=1) #(bsz, 2) dimensional
label[label == 2] = 1 #turning 3-ary to binary
class_labels = label
if args.logit_scale:
class_logits*=model.gpt.logit_scale
if args.outbias:
class_logits+=model.gpt.bias
loss_fn = torch.nn.CrossEntropyLoss()
match_loss = loss_fn(class_logits, class_labels)
loss = match_loss*args.disc_weight + args.gen_weight*gen_loss
overall_gen_loss = overall_gen_loss + gen_loss * bsz
eval_loss = eval_loss + match_loss * bsz
loss_epoch = loss_epoch + loss * bsz
num_loss = num_loss + bsz
if np.isnan(loss.detach().cpu().numpy()):
import pdb; pdb.set_trace()
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
if (step + 1) % args.gradient_accumulation_steps == 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if epoch_ % args.save_every == 0 or epoch_ == epochs_trained - 1:
logs = {}
# train
logs["loss_last_epoch"] = loss.item() # 本epoch最后一个batch的损失
# train 这个是一个epoch所有batch的平均
logs["train_overall_gen_loss"] = (overall_gen_loss / num_loss).item() # 本epoch所有batch的平均生成损失
logs["train_eval_loss"] = (eval_loss / num_loss).item() # 本epoch所有batch的平均鉴别损失
logs["train_loss"] = (loss_epoch / num_loss).item() # 本epoch所有batch的平均损失
# evaluate
if (
args.evaluate_during_training
):
results = evaluate(args, model, tokenizer)
for key, value in results.items():
eval_key = "eval_{}".format(key)
logs[eval_key] = value
# else
learning_rate_scalar = scheduler.get_lr()[0]
logs["learning_rate"] = learning_rate_scalar
# writer and print
for key, value in logs.items():
tb_writer.add_scalar(key, value, epoch_)
print(json.dumps({**logs, **{"epoch": epoch_}}))
if epoch_ % args.save_every == 0 or epoch_ == epochs_trained - 1:
torch.save(
model.state_dict(),
os.path.join(args.output_dir, f"{args.output_prefix}-{epoch_:03d}.pt"),
)
# evaluate(args, model, testdataset, tokenizer=tokenizer, epoch=epoch_)
tb_writer.close()
def evaluate(args, model, tokenizer, prefix_name=""):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,)
eval_outputs_dirs = (args.output_dir, args.output_dir + "-MM") if args.task_name == "mnli" else (args.output_dir,)
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs):
eval_dataset = ClipCocoDataset(args, args.testdata_loss, train_or_test='train', tokenizer=tokenizer)
if not os.path.exists(eval_output_dir):
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size
# Note that DistributedSampler samples randomly
eval_dataloader = DataLoader(eval_dataset, batch_size=args.eval_batch_size, shuffle=False)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix_name))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
overall_gen_loss = 0.0
nb_eval_steps = 0
preds = None
out_label_ids = None
pt_id = tokenizer.encode(args.code_1)[0]
nt_id = tokenizer.encode(args.code_0)[0]
for idx, (tokens, mask, prefix, style_token, label) in enumerate(eval_dataloader):
model.eval()
tokens, mask, label = tokens.to(args.device), mask.to(args.device), label.to(args.device)
prefix = prefix.to(args.device, dtype=torch.float32)
style_token = style_token.view(-1, 1).type_as(tokens)
with torch.no_grad():
# 加入style
weight = (style_token == pt_id).type_as(style_token).view(-1,1).to(args.device)
seq_a = pt_id * weight + nt_id * (1-weight)
seq_b = nt_id * weight + pt_id * (1-weight)
seq_a = torch.cat((seq_a, tokens), dim=1)[:,:-1]
seq_b = torch.cat((seq_b, tokens), dim=1)[:,:-1]
bsz = seq_a.shape[0]
seq_batched = torch.cat((seq_a,seq_b),dim=0)
# 更新前缀
prefix = (torch.cat((prefix, prefix), dim=0))
# 更新mask
mask = mask[:, :-1].to(torch.float32).to(args.device) # mask,加入T/F和style的mask
left_ = torch.ones(mask.shape[0], 1).type_as(mask)
mask = torch.cat((left_, mask), dim=1)
mask = (torch.cat((mask, mask), dim=0))
# 输入到模型中
outputs = model(seq_batched, prefix, mask)
losses = outputs[0].view(seq_batched.shape[0], -1)
#loss mask includes first padded token
if args.mask_eos_token:
loss_mask = mask[:,eval_dataset.prefix_length+1:-1].to(torch.float16)
if args.add_sep:
raise NotImplementedError
else:
loss_mask = mask[:,eval_dataset.prefix_length:-1].to(torch.float32)
#appending with ones to account for the control code token being added
if args.add_sep:
#adding the sep token would require extending the loss mask of ones by one position to the right (equivalent to prepending one on the left)
left_ = torch.ones(loss_mask.shape[0],2).type_as(loss_mask)
loss_mask = torch.cat((left_, loss_mask[:,:-1]), dim=1)
loss_lengths = torch.sum(loss_mask,1,keepdim=True)
loss_lengths_a, loss_lengths_b = torch.split(loss_lengths, bsz, dim=0)
loss_a,loss_b=torch.split(losses, bsz, dim=0)
mask_a, mask_b = torch.split(loss_mask, bsz, dim=0)
loss_a = loss_a * mask_a
loss_b = loss_b * mask_b
gen_loss_a = (label==1).to(torch.float32).unsqueeze(1)*loss_a/loss_lengths_a # 句子长度进行了平均
gen_loss_b = (label==0).to(torch.float32).unsqueeze(1)*loss_b/loss_lengths_b
gen_loss = torch.sum(gen_loss_a+gen_loss_b)/bsz # bachsize进行了平均
if args.sum_loss:
loss_a = loss_a.sum(dim=1)
loss_b= loss_b.sum(dim=1)
else:
loss_a = (loss_a/loss_lengths_a).sum(dim=1)
loss_b= (loss_b/loss_lengths_b).sum(dim=1)
class_logits = torch.stack((-loss_b, -loss_a), dim=1) #(bsz, 2) dimensional
label[label == 2] = 1 #turning 3-ary to binary
class_labels = label
loss_fn = torch.nn.CrossEntropyLoss()
if args.logit_scale:
class_logits*=model.gpt.logit_scale
if args.outbias:
class_logits+=model.gpt.bias
loss = loss_fn(class_logits, class_labels)
tmp_eval_loss = loss
tmp_gen_loss = gen_loss
logits = class_logits
eval_loss += tmp_eval_loss.mean().item()
overall_gen_loss += tmp_gen_loss.mean().item()
nb_eval_steps += 1
if preds is None:
preds = logits.detach().cpu().numpy()
out_label_ids = class_labels.detach().cpu().numpy()
else:
preds = np.append(preds, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, class_labels.detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
overall_gen_loss = overall_gen_loss / nb_eval_steps
if args.output_mode == "classification":
preds = np.argmax(preds, axis=1)
elif args.output_mode == "regression":
preds = np.squeeze(preds)
result = compute_metrics(eval_task, preds, out_label_ids)
result.update({'overall_gen_loss':overall_gen_loss})
result.update({'eval_loss':eval_loss})
return result
def evaluate2(args, model, tokenizer, epoch):
# dataset
dataset = ClipCocoDataset(args, args.testdata, train_or_test='test', tokenizer=tokenizer)
test_dataloader = DataLoader(dataset, batch_size=args.per_gpu_eval_batch_size, shuffle=False, drop_last=False)
ref = []
gt = []
image_paths = []
device = args.device
clipmodel, _ = clip.load("ViT-L/14", device=device, jit=False)
result = {}
for idx, (prefix, style, captions, imgpath, idxs) in enumerate(test_dataloader):
with torch.no_grad():
prefix = prefix.to(device, dtype=torch.float32)
if args.do_norm:
prefix = prefix / prefix.norm(2, -1, keepdim=True)
if args.do_sign:
prefix = torch.nn.functional.normalize(prefix, dim=1)
image_paths.extend(imgpath)
captions = [caption.split('\n') for caption in captions]
generated_sequences = model.generate(prefix=prefix, args=args, tokenizer=tokenizer, style=style)
for i in range(generated_sequences.shape[0]):
generated_sequence = generated_sequences[i]
generated_sequence = generated_sequence[generated_sequence != tokenizer.eos_token_id]
generated_text = tokenizer.decode(generated_sequence.tolist(), clean_up_tokenization_spaces=True)
ref.append(generated_text)
for caption in captions:
gt.append(caption)
# 计算Bleu、Cider等指标
clipscores, other_metrics = computer_clipscore_and_other(image_paths, clipmodel, device, ref, gt)
result.update(clipscores)
result.update(other_metrics)
# 保存描述
out_txt_dir = args.generated_path + "/" + args.teststyle + "/captions_generate_"+str(epoch)+".txt"
with open(out_txt_dir, "w") as file:
for generate_ref in ref:
file.write(generate_ref + "\n")
# 计算ppl评估指标
ppl_out_path = args.generated_path + "/" + args.teststyle + "/ppl_out_" + str(epoch) + ".txt"
result["ppl"] = eval_ppl(out_txt_dir, args.teststyle, ppl_out_path)
# 计算acc评估指标
file_error = args.generated_path + "/" + args.teststyle + "/file_error_"+str(epoch)+".txt"
result["acc"] = eval_acc(out_txt_dir, args.teststyle, device, tokenizer, file_error)
return result
def main():
parser = argparse.ArgumentParser()
# train add
parser.add_argument('--data', default='./data/dataset_train/Flickrstyle10k_ro_text_ViT-L_14_train.pkl')
parser.add_argument('--testdata', default='')
parser.add_argument('--teststyle', default='romantic')
parser.add_argument('--testdata_loss', default='')
parser.add_argument("--do_train", default=1)
parser.add_argument("--do_eval", default=0)
parser.add_argument("--output_dir", default="./model/gedi/test", type=str, required=False)
parser.add_argument("--generated_path", default="", type=str, required=False)
parser.add_argument('--output_prefix', default='flickrro')
parser.add_argument("--do_norm", default=True)
parser.add_argument("--do_sign", default=False) # 没有什么作用,可忽视
parser.add_argument('--variance', default=0.016)
parser.add_argument('--finetune', default=False)
parser.add_argument('--pretrain_path', default="")
parser.add_argument('--prefix_length', type=int, default=4)
parser.add_argument('--max_length', type=int, default=21)
parser.add_argument('--device', default='cuda:0')
parser.add_argument('--prefix_dim', type=int, default=768)
parser.add_argument('--save_every', type=int, default=1)
parser.add_argument("--code_0", type=str, default=" factual")
parser.add_argument("--code_1", type=str, default=" romantic")
parser.add_argument("--num_train_epochs", default=3.0, type=float)
parser.add_argument("--per_gpu_train_batch_size", default=16, type=int)
parser.add_argument("--per_gpu_eval_batch_size", default=16, type=int)
parser.add_argument("--dropout",default=0.1,type=float)
parser.add_argument("--gen_weight",default=0.8,type=float)
parser.add_argument("--learning_rate", default=27.5e-5, type=float)
parser.add_argument("--weight_decay", default=0.0, type=float)
parser.add_argument("--warmup_steps", default=0, type=int)
parser.add_argument("--do_lower_case", default=True)
parser.add_argument("--logit_scale", default=True, type=bool)
parser.add_argument("--overwrite_output_dir", default=True, type=bool)
parser.add_argument("--overwrite_cache", default=True, type=bool)
parser.add_argument("--evaluate_during_training", default=False, type=bool)
parser.add_argument("--eval_all_checkpoints", default=True, type=bool)
parser.add_argument("--model_name_or_path", default="gpt2", type=str, required=False)
parser.add_argument("--model_type", default="gpt2", type=str, required=False)
parser.add_argument("--seed", type=int, default=42)
# else
parser.add_argument("--do_sample", action="store_true",
help="If set to False greedy decoding is used. Otherwise sampling is used. Defaults to True.")
parser.add_argument("--temperature", type=float, default=1.0, help="lower tend toward greedy sampling")
parser.add_argument("--top_k", type=float, default=None,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.",)
parser.add_argument("--top_p", type=float, default=None,
help="The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.")
parser.add_argument("--repetition_penalty", default=1.2, type=float,
help="The parameter for repetition penalty. Between 1.0 and infinity. 1.0 means no penalty. Default to 1.0.")
parser.add_argument("--penalize_cond", action="store_true",
help="apply repetition penalty to tokens in coditioning text")
parser.add_argument("--filter_p", type=float, default=0.8,
help="filters at up to filter_p cumulative probability from next token distribution.")
parser.add_argument("--target_p", type=float, default=0.8,
help="In comination with filter_p, saves tokens with above target p probability of being in the correct class ")
parser.add_argument("--class_bias", type=float, default=None, help="biases GeDi's classification probabilties")
parser.add_argument("--task_name", default="sst-2", type=str, required=False, help="The name of the task to train selected in the list: " + ", ".join(processors.keys()),)
parser.add_argument("--threeway", action="store_true", help="does 3-way classification")
parser.add_argument("--sum_loss",action="store_true", help="sums losses")
parser.add_argument("--outbias",action="store_true", help="learns output bias for each class")
parser.add_argument("--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name",)
parser.add_argument("--tokenizer_name",default="",type=str,help="Pretrained tokenizer name or path if not the same as model_name",)
parser.add_argument("--cache_dir",default="",type=str,help="Where do you want to store the pre-trained models downloaded from s3",)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.",)
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.",)
parser.add_argument("--logging_steps", type=int, default=500, help="Log every X updates steps.")
parser.add_argument("--save_steps", type=int, default=500, help="Save checkpoint every X updates steps.")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument("--mask_eos_token", action="store_true", help="whether to mask eos token loss or not; prefer masking if training for DA",)
parser.add_argument("--add_sep", action="store_true", help="Include sep token if this arg is used between the two sentences in a pair | can/should be used for mrpc/mnli/qqp/qnli")
args, unknown = parser.parse_known_args()
if (
os.path.exists(args.output_dir)
and os.listdir(args.output_dir)
and args.do_train
and not args.overwrite_output_dir
):
raise ValueError(
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(
args.output_dir
)
)
args.n_gpu = 1
args.disc_weight = 1.0 - args.gen_weight
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
# Set seed
set_seed(args)
# Prepare GLUE task
args.task_name = args.task_name.lower()
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
args.output_mode = output_modes[args.task_name]
label_list = processor.get_labels()
num_labels = len(label_list)
args.model_type = args.model_type.lower()
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
config = config_class.from_pretrained(
args.config_name if args.config_name else args.model_name_or_path,
num_labels=num_labels,
finetuning_task=args.task_name,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.outbias:
if args.threeway:
config.nbias=3
else:
config.nbias=2
else:
config.nbias=0
config.embd_pdrop = args.dropout
config.attn_pdrop = args.dropout
config.resid_pdrop = args.dropout
if args.logit_scale:
config.logit_scale=True
else:
config.logit_scale=False
tokenizer = tokenizer_class.from_pretrained(
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path,
do_lower_case=args.do_lower_case,
cache_dir=args.cache_dir if args.cache_dir else None,
)
if args.add_sep:
special_tokens_dict = {'sep_token': '<SEP>'}
tokenizer.add_special_tokens(special_tokens_dict)
config.output_past = True #https://github.com/huggingface/transformers/pull/3734
gpt = model_class.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir if args.cache_dir else None,
)
gpt.resize_token_embeddings(len(tokenizer))
model = ClipCaptionModel(tokenizer, gpt, args.prefix_length, prefix_size=args.prefix_dim)
if args.finetune:
state_dict = torch.load(args.pretrain_path, map_location="cpu")
model.load_state_dict(state_dict)
logger.info("Training/evaluation parameters %s", args)
# Training
if args.do_train:
train_dataset = ClipCocoDataset(args, args.data, train_or_test='train', tokenizer=tokenizer)
train(args, train_dataset, model, tokenizer)
# Evaluation
if args.do_eval:
checkpoints = [args.output_dir]
if args.eval_all_checkpoints:
checkpoints = [os.path.join(root, file) for root, dirs, files in os.walk(args.output_dir) for file in files]
checkpoints.sort()
logging.getLogger("transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging
logger.info("Evaluate the following checkpoints: %s", checkpoints)
for checkpoint in checkpoints:
epoch = checkpoint.split("-")[-1]
epoch = int(epoch[:-3])
state_dict = torch.load(checkpoint, map_location="cpu")
model.load_state_dict(state_dict)
model = model.to(args.device)
result = evaluate2(args, model, tokenizer, epoch)
for key, value in result.items():
if isinstance(value, np.float16):
result[key] = float(value)
print(json.dumps({**result, **{"epoch": epoch}}))
if __name__ == "__main__":
main()