-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
924 lines (813 loc) · 43.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
import os
import sys
import time
import tqdm
import glob
import copy
import logging
import argparse
import pandas as pd
import numpy as np
from scipy.stats import pearsonr, spearmanr
from sklearn.metrics import accuracy_score, balanced_accuracy_score
import torch
import torch.nn as nn
from torch.nn import DataParallel
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
from torch_geometric.nn import GraphConv,GATv2Conv,RGCNConv
from transformers import AutoTokenizer, AutoModel, get_linear_schedule_with_warmup
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1,2,3,4,5,6,7'
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
parser = argparse.ArgumentParser()
# folders
parser.add_argument('--data_folder', type=str, default='./data/monologue_split_orig', help='input data folder')
parser.add_argument('--model_folder', type=str, default='./model/exp_name', help='model folder')
parser.add_argument('--log_file', type=str, default='./log/exp_name.log', help='log file')
parser.add_argument('--train_filename', type=str, default='train.csv', help='train data file')
parser.add_argument('--valid_filename', type=str, default='valid.csv', help='valid data file')
parser.add_argument('--test_filename', type=str, default='test.csv', help='test data file')
# flags
parser.add_argument('--train_flag', type=int, default=1, help='whether to train the model')
parser.add_argument('--test_flag', type=int, default=1, help='whether to test the model')
parser.add_argument('--real_time_flag', type=int, default=1, help='whether to test the model in real time setting, which means using only first several turns of a dialogue')
#parser.add_argument('--data_split', type=str, default='split1', help='which data split to use')
parser.add_argument('--max_length', type=int, default=512, help='max length of input sequence')
parser.add_argument('--base_model_name', type=str, default='studio-ousia/luke-japanese-base', help='name of pretrained model in huggingface')
parser.add_argument('--use_dropout', type=int, default=0, help='whether to use dropout after base model')
parser.add_argument('--multilinear', type=int, default=1, help='whether to use multiple linear layers after base model 0 means single linear layer')
parser.add_argument('--hidden_size', type=int, default=16, help='hidden size of the first linear layer if multilinear is 1')
parser.add_argument('--critertion_type', type=str, default='mae', help='criterion type, choose from mae mse')
parser.add_argument('--multitask', type=str, default='11111', help='whether to use multitask learning, 1 means use, 0 means not use, the order is n e o a c')
parser.add_argument('--lr', type=float, default=1e-5)
parser.add_argument('--warmup_steps', type=int, default=150)
parser.add_argument('--max_epoch', type=int, default=20, help='max epoch for training')
parser.add_argument('--patience', type=int, default=3, help='patience for early stopping')
parser.add_argument('--batch_size', type=int, default=128, help='batch size for training')
parser.add_argument('--context', type=int, default=0, help='whether to use dialogue scenario. 0 means monologue, 1 means dialogue')
parser.add_argument('--context_model_type', type=str, default='linear', help='context model type, choose from linear gcn-nospk2pred-lastnode')
parser.add_argument('--head_num', type=int, default=3, help='head number of gcn')
parser.add_argument('--model_variant', type=str, default='hcgnn', help='model variant, choose from gcn gatv2 rgcn hcgnn22 hcgnn3rel')
parser.add_argument('--ensemble', type=int, default=0, help='whether to use ensemble model')
parser.add_argument('--ensemble_model_folder', type=str, default='/share03/song/person_rec/model/nocontext_ensemble', help='folder of ensemble models')
args = parser.parse_args()
# variables
input_data_folder = args.data_folder
model_folder = args.model_folder
log_file = args.log_file
train_filename = args.train_filename
valid_filename = args.valid_filename
test_filename = args.test_filename
train_file = os.path.join(input_data_folder, train_filename)
valid_file = os.path.join(input_data_folder, valid_filename)
test_file = os.path.join(input_data_folder, test_filename)
os.makedirs(model_folder, exist_ok=True)
os.makedirs(os.path.dirname(log_file), exist_ok=True)
logging.basicConfig(filename=log_file, level=logging.INFO,
format='%(asctime)s:%(levelname)s:%(message)s')
train_flag = args.train_flag
test_flag = args.test_flag
real_time_flag = args.real_time_flag
max_length = args.max_length
# settings for base model
base_model_name = args.base_model_name
dropout = args.use_dropout
multilinear = args.multilinear
hidden_size = args.hidden_size
# settings for training
critertion_type = args.critertion_type
multitask_str = args.multitask
multitask = [int(flag) for flag in multitask_str]
lr = args.lr
warmup_steps = args.warmup_steps
max_epoch = args.max_epoch
patience = args.patience
batch_size = args.batch_size
# settings for dialogue scenario model
context = args.context
context_str = 'context' if context == 1 else 'nocontext'
context_model_type = args.context_model_type
if ('gcn' in context_model_type):
max_length = 64
head_num = args.head_num
model_variant = args.model_variant
pad_length = -1
# settings for ensemble (not really working well)
ensemble = args.ensemble
ensemble_model_folder = args.ensemble_model_folder
# constants for trail normalization
min_label = 1
max_label = 7
# constants (not used)
#exp_folder = './'
#input_data_folder = os.path.join(exp_folder, 'data', f'{context_str}_data', data_split)
#name = f'{context_str}_{data_split}_contextmodeltype-{context_model_type}_headnum{head_num}_modelvariant-{model_variant}_1'
#name = f'{context_str}_{data_split}_{context_model_type}_{model_variant}'
#model_folder = os.path.join(exp_folder, 'model', name)
#log_file = os.path.join(exp_folder, 'log', f'{name}.log')
def gene_data_from_csv(file_path, tokenizer, max_sentence_num=0):
csv_data = pd.read_csv(file_path)
dict_data = []
for i in range(len(csv_data)):
data_sample = csv_data.iloc[i]
text = data_sample['dialogue']
text = text.replace('\n', '')
if (context == 0):
if (max_sentence_num > 0):
if (text.startswith('[CLS]')):
text = text[len('[CLS]'):]
if (text.startswith('[SEP]')):
text = text[len('[SEP]'):]
sentences = text.split('[SEP]')
sentences = sentences[:max_sentence_num]
text = '[CLS]' + '[SEP]'.join(sentences)
text = text.replace('[CLS]', tokenizer.cls_token)
text = text.replace('[SEP]', tokenizer.sep_token)
if (not text.startswith(tokenizer.cls_token)):
text = tokenizer.cls_token + text
else:
if (max_sentence_num > 0):
if (text.startswith('[CLS]')):
text = text[len('[CLS]'):]
if (text.startswith('[SPK1]')):
text = text[len('[SPK1]'):]
sentences = text.split('[SPK1]')
sentences = sentences[:max_sentence_num]
text = '[CLS]' + '[SPK1]'.join(sentences)
text = text.replace('[CLS]', tokenizer.cls_token)
if (not text.startswith(tokenizer.cls_token)):
text = tokenizer.cls_token + text
assert text.startswith(tokenizer.cls_token)
labels = [data_sample['n'], data_sample['e'], data_sample['o'], data_sample['a'], data_sample['c']]
normalized_labels = [(label - min_label) / (max_label - min_label) for label in labels]
dict_data.append({
'text': text,
'labels': normalized_labels,
})
return dict_data
def gene_context_data(data, pad_length, tokenizer):
context_data = []
for sample in data:
text = sample['text']
text = text.replace('[CLS]', tokenizer.cls_token)
text = text.replace('[SEP]', tokenizer.sep_token)
text = text.replace(tokenizer.cls_token, '').replace(tokenizer.sep_token, '')
text_tmp = text.replace('[SPK1]', tokenizer.sep_token).replace('[SPK2]', tokenizer.sep_token)
if text_tmp.startswith(tokenizer.sep_token):
text_tmp = text_tmp[len(tokenizer.sep_token):]
sentences = text_tmp.split(tokenizer.sep_token)
sentences_with_speaker = []
for i, sentence in enumerate(sentences):
if sentence == '':
continue
if sentence.startswith(tokenizer.cls_token):
sentence = sentence[len(tokenizer.cls_token):]
if i % 2 == 0:
s = '[SPK1]' + sentence
else:
s = '[SPK2]' + sentence
sentences_with_speaker.append(s)
if len(sentences_with_speaker) < pad_length:
sentences_with_speaker += ['<pad>' for _ in range(pad_length - len(sentences_with_speaker))]
else:
sentences_with_speaker = sentences_with_speaker[:pad_length]
context_data.append({
'text': sentences_with_speaker, # each sentence is <s>[SPK*]text
'labels': sample['labels'],
})
return context_data
class ConversationDataset(Dataset):
def __init__(self, data, tokenizer,max_length):
self.data = data
self.tokenizer = tokenizer
self.max_length=max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
labels = torch.tensor(sample['labels'], dtype=torch.float)
input_ids=[]
attention_mask=[]
length=0
for text_row in sample['text']:
if text_row !='<pad>':
length+=1
encoding = self.tokenizer(text_row, padding="max_length", max_length=self.max_length, truncation=True, return_tensors="pt", add_special_tokens=True)
input_ids.append(encoding['input_ids'].squeeze())
attention_mask.append(encoding['attention_mask'].squeeze())
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': torch.tensor(labels),
'current_length':length
}
class MultiTaskDataset(Dataset):
def __init__(self, data, tokenizer, max_length):
self.data = data
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
sample = self.data[idx]
encoding = self.tokenizer(sample['text'], max_length=self.max_length, padding='max_length',
truncation=True, return_tensors='pt', add_special_tokens=False)
return {
'input_ids': encoding['input_ids'].squeeze(),
'attention_mask': encoding['attention_mask'].squeeze(),
'labels': torch.tensor(sample['labels'], dtype=torch.float)
}
class MultiTaskModel(nn.Module):
def __init__(self, base_model, dropout_flag, multilinear_flag):
super(MultiTaskModel, self).__init__()
self.base_model = base_model
self.dropout_flag = dropout_flag
self.multilinear_flag = multilinear_flag
self.dropout_layer = nn.Dropout(0.1)
if (self.multilinear_flag == 0):
self.task_heads = nn.ModuleList([
nn.Sequential(
nn.Linear(base_model.config.hidden_size, 1),
) for _ in range(5)
])
else:
self.task_heads = nn.ModuleList([
nn.Sequential(
nn.Linear(base_model.config.hidden_size, hidden_size),
nn.ReLU(),
nn.Linear(hidden_size, 1),
) for _ in range(5)
])
def forward(self, input_ids, attention_mask):
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
pooled_output = outputs['pooler_output']
if self.dropout_flag == 1:
pooled_output = self.dropout_layer(pooled_output)
regression_outputs = []
for task_head in self.task_heads:
regression_outputs.append(task_head(pooled_output))
return torch.cat(regression_outputs, dim=1)
class GCN(nn.Module):
def __init__(self,input_dim, hidden_dim1, output_dim, relations, heads):
super(GCN, self).__init__()
self.relations=1
self.output_dim=output_dim
self.conv2 = nn.ModuleList([GraphConv(input_dim, hidden_dim1) for _ in range(self.relations)])
self.conv3 = nn.ModuleList([GraphConv(hidden_dim1, output_dim) for _ in range(self.relations)])
def forward(self, x, relationsedge_indices_relations):
relation_outputs=[]
for i, conv_layer in enumerate(self.conv2):
relation_output=(conv_layer(x, relationsedge_indices_relations[-1]))
relation_output=F.relu(relation_output)
relation_output=self.conv3[i](relation_output, relationsedge_indices_relations[-1])
relation_output=relation_output.reshape(-1,1,self.output_dim)
relation_outputs.append(relation_output)
x=torch.cat(relation_outputs, dim=1)
return x
class GAT(nn.Module):
def __init__(self,input_dim, hidden_dim1, output_dim, relations, heads):
super(GAT, self).__init__()
self.relations=1
self.heads=heads
self.output_dim=hidden_dim1*self.heads
self.conv1 = nn.ModuleList([GATv2Conv(input_dim, hidden_dim1,heads=self.heads) for _ in range(self.relations)])
def forward(self, x, relationsedge_indices_relations):
relation_outputs=[]
for i, conv_layer in enumerate(self.conv1):
relation_output=(conv_layer(x, relationsedge_indices_relations[-1]))
relation_output=relation_output.reshape(-1,1,self.output_dim)
relation_outputs.append(relation_output)
x=torch.cat(relation_outputs, dim=1)
return x
class RGCN (nn.Module):
def __init__(self,input_dim, hidden_dim1, output_dim, relations, heads):
super(RGCN, self).__init__()
self.relations=1
self.heads=heads
self.output_dim=output_dim
self.conv1 = nn.ModuleList([RGCNConv(input_dim, hidden_dim1,2) for _ in range(self.relations)])
self.conv2 = nn.ModuleList([GraphConv(hidden_dim1, output_dim) for _ in range(self.relations)])
def forward(self, x, relationsedge_indices_relations,edge_type):
relation_outputs=[]
for i, conv_layer in enumerate(self.conv1):
relation_output=(conv_layer(x, relationsedge_indices_relations[-1],edge_type))
relation_output=F.relu(relation_output)
relation_output=self.conv2[i](relation_output, relationsedge_indices_relations[-1])
relation_output=relation_output.reshape(-1,1,self.output_dim)
relation_outputs.append(relation_output)
x=torch.cat(relation_outputs, dim=1)
return x
class GATv2GCN22(nn.Module):
def __init__(self,input_dim, hidden_dim1, output_dim, relations, heads):
super(GATv2GCN22, self).__init__()
self.relations=relations
self.heads=heads
self.output_dim=output_dim
self.conv1 = nn.ModuleList([GATv2Conv(input_dim, hidden_dim1,heads=self.heads) for _ in range(self.relations)])
self.conv2 = nn.ModuleList([GATv2Conv(hidden_dim1*self.heads, hidden_dim1,heads=self.heads) for _ in range(self.relations)])
self.conv3 = nn.ModuleList([GraphConv(hidden_dim1*self.heads, hidden_dim1) for _ in range(self.relations)])
self.conv4 = nn.ModuleList([GraphConv(hidden_dim1, output_dim) for _ in range(self.relations)])
def forward(self, x, relationsedge_indices_relations):
relation_outputs=[]
for i, conv_layer in enumerate(self.conv1):
relation_output=(conv_layer(x, relationsedge_indices_relations[i]))
relation_output=F.relu(relation_output)
relation_output=self.conv2[i](relation_output, relationsedge_indices_relations[i])
relation_output=F.relu(relation_output)
relation_output=self.conv3[i](relation_output, relationsedge_indices_relations[i])
relation_output=F.relu(relation_output)
relation_output=self.conv4[i](relation_output, relationsedge_indices_relations[i])
relation_output=relation_output.reshape(-1,1,self.output_dim)
relation_outputs.append(relation_output)
x=torch.cat(relation_outputs, dim=1)
return x
class GATv2GCN(nn.Module):
"""
GATv2+GCN model with 4/6 relations (GAT->GCN)
"""
def __init__(self,input_dim, hidden_dim1, output_dim, relations, heads):
super(GATv2GCN, self).__init__()
self.relations=relations
self.heads=heads
self.output_dim=output_dim
self.conv1 = nn.ModuleList([GATv2Conv(input_dim, hidden_dim1,heads=self.heads) for _ in range(self.relations)])
self.conv2 = nn.ModuleList([GraphConv(hidden_dim1*self.heads, hidden_dim1) for _ in range(self.relations)])
self.conv3 = nn.ModuleList([GraphConv(hidden_dim1, output_dim) for _ in range(self.relations)])
def forward(self, x, relationsedge_indices_relations):
relation_outputs=[]
for i, conv_layer in enumerate(self.conv1):
relation_output=(conv_layer(x, relationsedge_indices_relations[i]))
relation_output=F.relu(relation_output)
relation_output=self.conv2[i](relation_output, relationsedge_indices_relations[i])
relation_output=F.relu(relation_output)
relation_output=self.conv3[i](relation_output, relationsedge_indices_relations[i])
relation_output=relation_output.reshape(-1,1,self.output_dim)
relation_outputs.append(relation_output)
x=torch.cat(relation_outputs, dim=1)
return x
class GATv2GCN3REL(nn.Module):
def __init__(self,input_dim, hidden_dim1, output_dim, relations, heads):
super(GATv2GCN3REL, self).__init__()
self.relations=relations
self.heads=heads
self.output_dim=output_dim
self.conv1 = nn.ModuleList([GATv2Conv(input_dim, hidden_dim1,heads=self.heads) for _ in range(self.relations)])
self.conv2 = nn.ModuleList([GraphConv(hidden_dim1*self.heads, hidden_dim1) for _ in range(self.relations)])
self.conv3 = nn.ModuleList([GraphConv(hidden_dim1, output_dim) for _ in range(self.relations)])
self.conv4 = RGCNConv(input_dim, hidden_dim1,2)
self.conv5 = GraphConv(hidden_dim1,output_dim)
def forward(self, x, relationsedge_indices_relations,edge_type):
relation_outputs=[]
for i, conv_layer in enumerate(self.conv1):
relation_output=(conv_layer(x, relationsedge_indices_relations[i]))
relation_output=F.relu(relation_output)
relation_output=self.conv2[i](relation_output, relationsedge_indices_relations[i])
relation_output=F.relu(relation_output)
relation_output=self.conv3[i](relation_output, relationsedge_indices_relations[i])
relation_output=relation_output.reshape(-1,1,self.output_dim)
relation_outputs.append(relation_output)
relation_output_rgcn=self.conv4(x, relationsedge_indices_relations[-1],edge_type)
relation_output_rgcn=self.conv5(relation_output_rgcn,relationsedge_indices_relations[-1])
relation_output_rgcn=relation_output_rgcn.reshape(-1,1,self.output_dim)
relation_outputs.append(relation_output_rgcn)
x=torch.cat(relation_outputs, dim=1)
return x
class ScaledDotProductAttention(nn.Module):
def __init__(self, dim: int):
super(ScaledDotProductAttention, self).__init__()
self.sqrt_dim = np.sqrt(dim)
def forward(self, query, key, value,mask=None):
score = torch.bmm(query, key.transpose(1, 2)) / self.sqrt_dim
if mask is not None:
score.masked_fill_(mask.view(score.size()), -float('Inf'))
attn = F.softmax(score, -1)
context = torch.bmm(attn, value)
return context, attn
def edge_perms(length):
"""
Method to construct the edges of a graph (a utterance) considering the all the past utterances.
return: list of tuples. tuple -> (vertice(int), neighbor(int))
"""
user_sys = set()
sys_user = set()
user_user = set()
sys_sys = set()
eff_array_user=[]
eff_array_sys=[]
for i in range(length):
if i%2==0:
eff_array_user.append(i)
else:
eff_array_sys.append(i)
for i in range (length):
if i%2==0:
for j in eff_array_user:
user_user.add((i,j))
for j in eff_array_sys:
user_sys.add((i,j))
else:
for j in eff_array_user:
sys_user.add((i,j))
for j in eff_array_sys:
sys_sys.add((i,j))
user_sys_user=user_sys.union(user_user)
sys_user_sys=sys_user.union(sys_sys)
return [user_user,user_sys, sys_sys, sys_user, sys_user_sys,user_sys_user]
def batch_graphify_hgcn(features, lengths, device):
node_features, edge_index1,edge_index2,edge_index3,edge_index4, edge_index5, edge_index6,edge_type= [], [], [],[],[],[],[],[]
batch_size = features.size(0)
length_sum = 0
for j in range(batch_size):
cur_len = lengths[j].item()
node_features.append(features[j, :cur_len, :])
perms = edge_perms(cur_len)
perms_rec0 = [(item[0] + length_sum, item[1] + length_sum) for item in perms[0]]
perms_rec1= [(item[0] + length_sum, item[1] + length_sum) for item in perms[1]]
perms_rec2 = [(item[0] + length_sum, item[1] + length_sum) for item in perms[2]]
perms_rec3 = [(item[0] + length_sum, item[1] + length_sum) for item in perms[3]]
perms_rec4= [(item[0] + length_sum, item[1] + length_sum) for item in perms[4]]
perms_rec5= [(item[0] + length_sum, item[1] + length_sum) for item in perms[5]]
length_sum += cur_len
for item, item_rec in zip(perms[0], perms_rec0):
edge_index1.append(torch.tensor([item_rec[0], item_rec[1]])) #user_user
edge_type.append(torch.tensor([0]))
for item, item_rec in zip(perms[1], perms_rec1):
edge_index2.append(torch.tensor([item_rec[0], item_rec[1]]))#user_sys
edge_type.append(torch.tensor([1]))
for item, item_rec in zip(perms[2], perms_rec2):
edge_index3.append(torch.tensor([item_rec[0], item_rec[1]])) #sys_sys
for item, item_rec in zip(perms[3], perms_rec3):
edge_index4.append(torch.tensor([item_rec[0], item_rec[1]])) #sys_user
for item, item_rec in zip(perms[4], perms_rec4):
edge_index5.append(torch.tensor([item_rec[0], item_rec[1]])) #sys_user_sys
for item, item_rec in zip(perms[5], perms_rec5):
edge_index6.append(torch.tensor([item_rec[0], item_rec[1]])) #user_sys_user
node_features = torch.cat(node_features, dim=0).to(device) # [E, D_g]
edge_index = [torch.stack(edge_index1).t().contiguous().to(device),torch.stack(edge_index2).t().contiguous().to(device),torch.stack(edge_index3).t().contiguous().to(device),torch.stack(edge_index4).t().contiguous().to(device), torch.stack(edge_index5).t().contiguous().to(device), torch.stack(edge_index6).t().contiguous().to(device)] # [2, E]
edge_type = torch.stack(edge_type).to(device)
edge_type=edge_type.squeeze(-1)
return node_features, edge_index,edge_type
class ContextModel(nn.Module):
def __init__(self, base_model, batch_size, max_conver_num,device, context_model_type, head_num, model_variant):
super(ContextModel, self).__init__()
self.base_model=base_model
self.max_conver_num = max_conver_num
self.device = device
self.heads=head_num
self.context_model_type = context_model_type
in_hidden_dim = base_model.config.hidden_size
gcn_hidden_dim1 = 512
gcn_out_dim = 256
if ('nospk2pred' in self.context_model_type):
self.relations=2
else:
self.relations=4
if (model_variant == 'gcn'):
self.gcn = GCN(input_dim=in_hidden_dim, hidden_dim1=gcn_hidden_dim1,output_dim=gcn_out_dim,relations=self.relations,heads=self.heads).to(device)
self.task_heads = nn.ModuleList([nn.Sequential(nn.Linear(gcn_out_dim, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1),) for _ in range(5)])
elif (model_variant == 'gatv2'):
self.gcn = GAT(input_dim=in_hidden_dim, hidden_dim1=gcn_hidden_dim1,output_dim=gcn_out_dim,relations=self.relations,heads=self.heads).to(device)
self.task_heads = nn.ModuleList([nn.Sequential(nn.Linear(self.heads*gcn_hidden_dim1, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1),) for _ in range(5)])
elif (model_variant == 'rgcn'):
self.gcn = RGCN(input_dim=in_hidden_dim, hidden_dim1=gcn_hidden_dim1,output_dim=gcn_out_dim,relations=self.relations,heads=self.heads).to(device)
self.task_heads = nn.ModuleList([nn.Sequential(nn.Linear(gcn_out_dim, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1),) for _ in range(5)])
elif (model_variant == 'hcgnn22'):
self.gcn = GATv2GCN22(input_dim=in_hidden_dim, hidden_dim1=gcn_hidden_dim1,output_dim=gcn_out_dim,relations=self.relations,heads=self.heads).to(device)
self.task_heads = nn.ModuleList([nn.Sequential(nn.Linear(self.relations*gcn_out_dim, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1),) for _ in range(5)])
elif (model_variant == 'hcgnn3rel'):
self.gcn = GATv2GCN3REL(input_dim=in_hidden_dim, hidden_dim1=gcn_hidden_dim1,output_dim=gcn_out_dim,relations=self.relations,heads=self.heads).to(device)
self.task_heads = nn.ModuleList([nn.Sequential(nn.Linear((self.relations+1)*gcn_out_dim, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1),) for _ in range(5)])
else:
self.gcn = GATv2GCN(input_dim=in_hidden_dim, hidden_dim1=gcn_hidden_dim1,output_dim=gcn_out_dim,relations=self.relations,heads=self.heads).to(device)
self.task_heads = nn.ModuleList([nn.Sequential(nn.Linear(self.relations*gcn_out_dim, hidden_size), nn.ReLU(), nn.Linear(hidden_size, 1),) for _ in range(5)])
self.attention=ScaledDotProductAttention(gcn_out_dim)
def forward(self, input_ids, attention_mask, current_length):
input_id = input_ids.reshape(-1, input_ids.shape[-1]) #torch.Size([96, 64])
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1])
batch_embeddings=self.base_model(input_ids=input_id, attention_mask=attention_mask).pooler_output #torch.Size([192, 768])
batch_embeddings = batch_embeddings.reshape(input_ids.shape[0], -1, batch_embeddings.shape[-1]) #torch.Size([4, 48, 768])
if model_variant == 'rgcn':
features, edge_index,edge_type = batch_graphify_hgcn(batch_embeddings, current_length, self.device)
gcn_features = self.gcn(features, edge_index,edge_type)
elif model_variant == 'hcgnn3rel':
features, edge_index,edge_type = batch_graphify_hgcn(batch_embeddings, current_length, self.device)
gcn_features = self.gcn(features, edge_index,edge_type)
gcn_features, attn = self.attention(gcn_features, gcn_features, gcn_features)
else:
features, edge_index, edge_type = batch_graphify_hgcn(batch_embeddings, current_length, self.device)
gcn_features = self.gcn(features, edge_index)
gcn_features, attn = self.attention(gcn_features, gcn_features, gcn_features)
gcn_features = gcn_features.reshape(gcn_features.shape[0], -1)
regression_outputs = []
for task_head in self.task_heads:
regression_outputs.append(task_head(gcn_features))
return torch.cat(regression_outputs, dim=1)
def valid(model, valid_dataloader, criterion):
model.eval()
epoch_loss = 0
with torch.no_grad():
for batch in valid_dataloader:
loss, outputs, labels = cal_loss(batch, model, criterion, context_model_type)
epoch_loss += loss.item()
return epoch_loss/len(valid_dataloader)
def cal_loss(batch, model, criterion, context_model_type):
if ('gcn' in context_model_type):
input_ids = torch.stack(batch['input_ids'],dim=0).to(device).permute(1,0,2) # shape: [batch_size, max_conver_num, max_length]
attention_mask = torch.stack(batch['attention_mask'],dim=0).to(device).permute(1,0,2)
current_length=batch['current_length'].to(device)
labels = batch['labels'].to(device) # [batch_size, 5]
dialogue_labels = labels.repeat_interleave(current_length, dim=0)
model_outputs = model(input_ids, attention_mask, current_length)
if 'lastnode' in context_model_type:
loss = 0
outputs = []
accumulate_num = 0
for i in range(len(current_length)):
accumulate_num += current_length[i]
outputs.append(model_outputs[accumulate_num-1])
loss += criterion(model_outputs[accumulate_num-1], dialogue_labels[accumulate_num-1])
outputs = torch.stack(outputs, dim=0).to(device) # torch.stack
else:
outputs = []
accumulate_num = 0
loss = 0
for i in range(len(current_length)):
dialogue_loss = 0
accumulate_result = torch.zeros_like(model_outputs[0])
for j in range(current_length[i]):
if (j % 2 == 0):
accumulate_result += model_outputs[accumulate_num+j]
sentence_loss = criterion(model_outputs[i], dialogue_labels[i])
dialogue_loss += sentence_loss
accumulate_result = accumulate_result / (current_length[i]/2)
#accumulate_result = accumulate_result / (current_length[i])
outputs.append(accumulate_result)
accumulate_num += current_length[i]
dialogue_loss /= (current_length[i]/2)
loss += dialogue_loss
outputs = torch.stack(outputs, dim=0).to(device) # torch.stack
else:
input_ids = batch['input_ids'].cuda()
attention_mask = batch['attention_mask'].cuda()
labels = batch['labels'].cuda()
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
loss = criterion(outputs[:, [i for i, flag in enumerate(multitask) if flag == 1]], labels[:, [i for i, flag in enumerate(multitask) if flag == 1]])
return loss, outputs, labels
def train(model, train_dataloader, valid_dataloader, criterion, patience, max_epoch):
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
if (warmup_steps > 0):
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=warmup_steps, num_training_steps=max_epoch*len(train_dataloader))
best_loss = float('inf')
best_epoch = -1
for epoch in range(max_epoch):
model.train()
epoch_loss = 0
for batch in tqdm.tqdm(train_dataloader):
loss, outputs, labels = cal_loss(batch, model, criterion, context_model_type)
epoch_loss += loss.item()
optimizer.zero_grad()
if (warmup_steps > 0):
scheduler.step()
loss.backward()
optimizer.step()
#torch.save(model.state_dict(), os.path.join(model_folder, f'model_{epoch}.pt'))
print('epoch: {}, train loss: {}'.format(epoch, epoch_loss/len(train_dataloader)))
logging.info('epoch: {}'.format(epoch))
logging.info('train loss: {}'.format(epoch_loss/len(train_dataloader)))
valid_loss = valid(model, valid_dataloader, criterion)
print('valid loss: {}'.format(valid_loss))
logging.info('valid loss: {}'.format(valid_loss))
if valid_loss < best_loss:
best_loss = valid_loss
best_epoch = epoch
torch.save(model.state_dict(), os.path.join(model_folder, 'model.pt'))
else:
if epoch - best_epoch >= patience:
break
def eval_real_time(model, criterion, label_medians, test_file, tokenizer, max_sent, context):
if ('gcn' in context_model_type):
tmp_test_data = gene_data_from_csv(test_file, tokenizer, max_sent)
tmp_test_data = gene_context_data(tmp_test_data, pad_length, tokenizer)
tmp_test_dataset = ConversationDataset(tmp_test_data, tokenizer, max_length)
tmp_test_dataloader= DataLoader(tmp_test_dataset, batch_size=batch_size, shuffle=False)
tmp_res = evaluation(model, tmp_test_dataloader, criterion, label_medians)
else:
tmp_test_data = gene_data_from_csv(test_file, tokenizer, max_sent)
tmp_test_dataset = MultiTaskDataset(tmp_test_data, tokenizer, max_length)
tmp_test_dataloader= DataLoader(tmp_test_dataset, batch_size=batch_size, shuffle=False)
tmp_res = evaluation(model, tmp_test_dataloader, criterion, label_medians)
return tmp_res
def evaluation(model, test_dataloader, criterion, label_medians, ensemble=False):
if ensemble:
model_list = model
for m in model_list:
m.eval()
else:
model.eval()
epoch_loss = 0
epoch_labels = []
epoch_preds = []
with torch.no_grad():
for batch in test_dataloader:
if ensemble:
output_list = []
for m in model_list:
batch_clone = copy.deepcopy(batch)
loss, outputs, labels = cal_loss(batch_clone, m, criterion, context_model_type)
output_list.append(outputs.clone())
outputs = torch.stack(output_list, dim=0)
outputs = torch.mean(outputs, dim=0)
else:
loss, outputs, labels = cal_loss(batch, model, criterion, context_model_type)
epoch_loss += loss.item()
epoch_labels.append(labels.cpu().numpy())
epoch_preds.append(outputs.cpu().numpy())
avg_loss = epoch_loss/len(test_dataloader)
labels = np.concatenate(epoch_labels)
preds = np.concatenate(epoch_preds)
# pearson correlation
pearson_corr = []
pearson_p_values = []
spearman_corr = []
spearman_p_values = []
for i in range(preds.shape[1]):
labels_i = labels[:, i]
preds_i = preds[:, i]
pearson_corr_i, pearson_p_value_i = pearsonr(labels_i, preds_i)
spearman_corr_i, spearman_p_value_i = spearmanr(labels_i, preds_i)
pearson_corr.append(pearson_corr_i)
pearson_p_values.append(pearson_p_value_i)
spearman_corr.append(spearman_corr_i)
spearman_p_values.append(spearman_p_value_i)
# acc for using 0.5 as the threshold
labels_binary_05 = np.array([[1 if label >= 0.5 else 0 for i, label in enumerate(sample)] for sample in labels])
preds_binary_05 = np.array([[1 if pred >= 0.5 else 0 for i, pred in enumerate(sample)] for sample in preds])
acc_list_05 = []
balanced_acc_list_05 = []
for i in range(preds_binary_05.shape[1]):
acc_list_05.append(accuracy_score(labels_binary_05[:, i], preds_binary_05[:, i]))
balanced_acc_list_05.append(balanced_accuracy_score(labels_binary_05[:, i], preds_binary_05[:, i]))
# acc
labels_binary = np.array([[1 if label >= label_medians[i] else 0 for i, label in enumerate(sample)] for sample in labels])
preds_binary = np.array([[1 if pred >= label_medians[i] else 0 for i, pred in enumerate(sample)] for sample in preds])
acc_list = []
balanced_acc_list = []
for i in range(preds_binary.shape[1]):
acc_list.append(accuracy_score(labels_binary[:, i], preds_binary[:, i]))
balanced_acc_list.append(balanced_accuracy_score(labels_binary[:, i], preds_binary[:, i]))
return {
'loss': avg_loss,
'pearson_corr_list': pearson_corr,
'pearson_p_values': pearson_p_values,
'spearman_corr_list': spearman_corr,
'spearman_p_values': spearman_p_values,
'acc_list_05': acc_list_05,
'balanced_acc_list_05': balanced_acc_list_05,
'acc_list': acc_list,
'balanced_acc_list': balanced_acc_list
}
def print_res(res, name='test'):
print (res)
logging.info(f'-----------{name}---------------------')
logging.info('{} loss: {:.3f}'.format(name, res['loss']))
logging.info('pearson correlation: {}'.format([round(corr, 3) for corr in res['pearson_corr_list']]))
logging.info('pearson p value: {}'.format([round(p_value, 3) for p_value in res['pearson_p_values']]))
logging.info('spearman correlation: {}'.format([round(corr, 3) for corr in res['spearman_corr_list']]))
logging.info('spearman p value: {}'.format([round(p_value, 3) for p_value in res['spearman_p_values']]))
logging.info('acc using 0.5 as threshold: {}'.format([round(acc, 3) for acc in res['acc_list_05']]))
logging.info('avg acc using 0.5 as threshold: {:.3f}'.format(np.mean(res['acc_list_05'])))
logging.info('balanced acc using 0.5 as threshold: {}'.format([round(balanced_acc, 3) for balanced_acc in res['balanced_acc_list_05']]))
logging.info('avg balanced acc using 0.5 as threshold: {:.3f}'.format(np.mean(res['balanced_acc_list_05'])))
logging.info('acc: {}'.format([round(acc, 3) for acc in res['acc_list']]))
logging.info('avg acc: {:.3f}'.format(np.mean(res['acc_list'])))
logging.info('balanced acc: {}'.format([round(balanced_acc, 3) for balanced_acc in res['balanced_acc_list']]))
logging.info('avg balanced acc: {:.3f}'.format(np.mean(res['balanced_acc_list'])))
def main():
global pad_length
logging.info('base model: {}'.format(base_model_name))
logging.info('batch size: {}'.format(batch_size))
logging.info('max length: {}'.format(max_length))
logging.info('max epoch: {}'.format(max_epoch))
logging.info('patience: {}'.format(patience))
logging.info('learning rate: {}'.format(lr))
logging.info('hidden size: {}'.format(hidden_size))
logging.info('multitask: {}'.format(multitask_str))
logging.info('dropout: {}'.format(dropout))
logging.info('multilinear: {}'.format(multilinear))
logging.info('warmup steps: {}'.format(warmup_steps))
logging.info('criterion type: {}'.format(critertion_type))
logging.info('context: {}'.format(context))
logging.info('context model type: {}'.format(context_model_type))
logging.info('loading data...')
tokenizer=AutoTokenizer.from_pretrained(base_model_name)
tokenizer.add_tokens(['[SPK1]','[SPK2]'])
train_data = gene_data_from_csv(train_file, tokenizer)
label_medians = np.median(np.array([sample['labels'] for sample in train_data]), axis=0)
valid_data = gene_data_from_csv(valid_file, tokenizer)
test_data = gene_data_from_csv(test_file, tokenizer)
if ('gcn' in context_model_type):
pad_length = 0
for sample in train_data:
sentences_num = sample['text'].count('[SPK')
pad_length = max(pad_length, sentences_num)
train_data = gene_context_data(train_data, pad_length, tokenizer)
valid_data = gene_context_data(valid_data, pad_length, tokenizer)
test_data = gene_context_data(test_data, pad_length, tokenizer)
train_dataset = ConversationDataset(train_data, tokenizer, max_length)
valid_dataset = ConversationDataset(valid_data, tokenizer, max_length)
test_dataset = ConversationDataset(test_data, tokenizer, max_length)
else:
train_dataset = MultiTaskDataset(train_data, tokenizer, max_length)
valid_dataset = MultiTaskDataset(valid_data, tokenizer, max_length)
test_dataset = MultiTaskDataset(test_data, tokenizer, max_length)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
valid_dataloader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
logging.info('initializing model...')
base_model = AutoModel.from_pretrained(base_model_name)
base_model.resize_token_embeddings(len(tokenizer))
if ('gcn' in context_model_type):
model = ContextModel(base_model, batch_size, pad_length, device, context_model_type, head_num, model_variant)
else:
model = MultiTaskModel(base_model=base_model, dropout_flag=dropout, multilinear_flag=multilinear)
model = DataParallel(model)
model.to(device)
if (critertion_type=='mse'):
criterion = nn.MSELoss()
elif (critertion_type=='mae'):
criterion = nn.L1Loss()
if (train_flag==1):
logging.info('start training...')
train(model, train_dataloader, valid_dataloader, criterion, patience, max_epoch)
if (test_flag==1):
logging.info('start evaluation...')
model.load_state_dict(torch.load(os.path.join(model_folder, 'model.pt')))
if (real_time_flag == 1):
for max_sent in [2,3,4,5,10]:
tmp_res = eval_real_time(model, criterion, label_medians, test_file, tokenizer, max_sent, context)
print_res(tmp_res, name=f'test_max_sent{max_sent}')
valid_res = evaluation(model, valid_dataloader, criterion, label_medians)
res = evaluation(model, test_dataloader, criterion, label_medians)
print_res(valid_res, 'valid')
print_res(res, 'test')
def eval_ensemble():
global pad_length
logging.info('base model: {}'.format(base_model_name))
logging.info('batch size: {}'.format(batch_size))
logging.info('max length: {}'.format(max_length))
logging.info('max epoch: {}'.format(max_epoch))
logging.info('patience: {}'.format(patience))
logging.info('learning rate: {}'.format(lr))
logging.info('hidden size: {}'.format(hidden_size))
logging.info('multitask: {}'.format(multitask_str))
logging.info('dropout: {}'.format(dropout))
logging.info('multilinear: {}'.format(multilinear))
logging.info('warmup steps: {}'.format(warmup_steps))
logging.info('criterion type: {}'.format(critertion_type))
logging.info('context: {}'.format(context))
logging.info('context model type: {}'.format(context_model_type))
logging.info('loading data...')
tokenizer=AutoTokenizer.from_pretrained(base_model_name)
#tokenizer.add_tokens(['[SPK1]','[SPK2]'])
train_data = gene_data_from_csv(train_file, tokenizer)
label_medians = np.median(np.array([sample['labels'] for sample in train_data]), axis=0)
test_data = gene_data_from_csv(test_file, tokenizer)
test_dataset = MultiTaskDataset(test_data, tokenizer, max_length)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
logging.info('initializing model...')
base_model = AutoModel.from_pretrained(base_model_name)
#base_model.resize_token_embeddings(len(tokenizer))
logging.info('start evaluation...')
model_files = glob.glob(os.path.join(ensemble_model_folder, '*.pt'))[:2]
# sort
model_files = sorted(model_files)
print (model_files)
model_num = len(model_files)
model_list = []
for i in range(model_num):
if ('gcn' in context_model_type):
model = ContextModel(base_model, batch_size, pad_length, device, context_model_type, head_num, model_variant)
else:
model = MultiTaskModel(base_model=base_model, dropout_flag=dropout, multilinear_flag=multilinear)
model = DataParallel(model)
model.to(device)
model_list.append(model)
if (critertion_type=='mse'):
criterion = nn.MSELoss()
elif (critertion_type=='mae'):
criterion = nn.L1Loss()
for model, model_name in zip(model_list, model_files):
try:
model.load_state_dict(torch.load(model_name))
print (model_name, 'loaded')
except:
print (model_name, 'failed')
res = evaluation(model_list, test_dataloader, criterion, label_medians, ensemble=True)
print_res(res, 'test')
if __name__ == '__main__':
if not ensemble:
main()
else:
# no training only evaluation
eval_ensemble()