forked from koc-lab/w2gm-zipfian
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_word_variances_additional.py
100 lines (67 loc) · 2.98 KB
/
analyze_word_variances_additional.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from word2gm_loader import Word2GM
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy import stats
import argparse
def func(x, a, b):
return b/np.power(x,a)
def read_vocab(vocab_path):
vocab = dict()
freq_vocab = dict()
word_ids = []
with open(vocab_path) as f:
next(f)
for line_no, line in enumerate(f):
word = line.split()[0]
vocab[word[:]] = line_no
freq_vocab[word[:]] = int(line.split()[1])
word_ids.append(line_no)
return vocab, word_ids, freq_vocab
def get_sorted_variances(model, vocab, words_ids, mixtures):
num_mixtures = mixtures.shape[1]
var_idx, var_pair = model.sort_low_var(list(range(0,(len(vocab)+1)*num_mixtures)))
var_pair = sorted(var_pair, key=lambda item: item[0])
var_pair = var_pair[num_mixtures:]
avg_var = []
for i in words_ids:
var = 0
for mix in range(num_mixtures):
var += mixtures[i][mix]*np.exp(var_pair[num_mixtures*i+mix][1])
avg_var.append(var)
return avg_var
def calculate_correlations(variances, freq_vocab):
total_word_count = 0
for key in freq_vocab:
total_word_count += freq_vocab[key]
word_freq = [freq_vocab[key]/total_word_count for key in freq_vocab.keys()]
spearman = stats.spearmanr(variances,word_freq)
pearson = stats.pearsonr(variances,word_freq)
kendall = stats.kendalltau(variances,word_freq)
return spearman, pearson, kendall
def plot_results(variances, word_ids, swa=False):
plt.figure()
popt, pcov = curve_fit(func, (np.asarray(word_ids)+1), np.asarray(variances))
fig = plt.hexbin((np.asarray(word_ids)+1), np.asarray(variances), cmap='summer', mincnt=3, gridsize=75, edgecolors='black', bins=100)
plt.plot((np.asarray(word_ids)+1), func((np.asarray(word_ids)+1), *popt), 'r', label=r"a = " + str(round(popt[0],2)) + ", b = " + str(round(popt[1],2)))
cb = plt.colorbar(fig)
cb.set_label('Word Counts falling into the bin')
plt.legend()
plt.ylim(ymax = max(variances))
plt.ylabel(r'Variance', fontsize=14)
plt.xlabel(r'Rank of Words', fontsize=14)
plt.title('Average Variances of Multimodals of Given Model', fontsize=12)
plt.tight_layout()
plt.show()
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', required=True, type=str)
args = parser.parse_args()
model = Word2GM(args.model_path)
mixtures = model.mixture[1:][:]
vocab, word_ids, freq_vocab = read_vocab(args.model_path+"/vocab.txt")
variances = get_sorted_variances(model, vocab, word_ids, mixtures)
spearman, pearson, kendall = calculate_correlations(variances, freq_vocab)
print("Sperman: r = "+str(spearman[0])+", p = "+str(spearman[1]))
print("Pearson: rho = "+str(pearson[0])+", p = "+str(pearson[1]))
print("Kendall: tau = "+str(kendall[0])+", p = "+str(kendall[1]))
plot_results(variances, word_ids)