-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpdebench-swe-rdb_model-M.yaml
78 lines (78 loc) · 1.82 KB
/
pdebench-swe-rdb_model-M.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
model_type: pdeformer
model:
graphormer:
num_node_type: 128
num_in_degree: 32
num_out_degree: 32
num_spatial: 16
num_encoder_layers: 12
embed_dim: 768
ffn_embed_dim: 1536
num_heads: 32
pre_layernorm: True
scalar_encoder:
dim_hidden: 256
num_layers: 3
function_encoder:
type: cnn2dv3
num_branches: 4
resolution: 128
conv2d_input_txyz: False
cnn_keep_nchw: True
multi_inr:
enable: False
inr:
type: poly_inr
num_layers: 12
dim_hidden: 256
poly_inr:
enable_affine: False
enable_shift: True
enable_scale: True
modify_he_init: False
affine_act_fn: identity # {identity, lrelu, sin}
activation_fn: sin # {lrelu, sin}
hypernet:
dim_hidden: 512
num_layers: 2
shared: False # whether the parameters of all INR layers are generated by the same hypernet
load_ckpt: path/to/your/downloaded/model-M.ckpt
# You can download from https://ai.gitee.com/functoreality/PDEformer2-M/blob/master/model-M.ckpt
data:
path: ../data_download # or any path/to/your/data_download
type: single_pde
num_workers: 8
num_samples_per_file:
train: 1
test: 100
pde_dag:
max_n_scalar_nodes: 80
max_n_function_nodes: 4
disconn_attn_bias: -inf
single_pde:
param_name: rdb
regularize_ratio: 0.
train: [1]
train:
total_batch_size: 1
num_txyz_samp_pts: 8192
lr_init: 5.e-6
epochs: 600
loss:
type: RMSE
normalize: True
normalize_eps: 0.05
optimizer: Adam # {Adam, AdamW}
weight_decay: 0.0
lr_scheduler:
type: mstep
milestones: [1]
decay: 0.9
enable_warmup: False
grad_clip_value: 1 # -1 means no gradient clipping
eval:
total_batch_size: 4
interval: 60
plot_num_per_type: 1
dataset_per_type: 1
record_dir: "exp/benchmark_data/pdebench-rdb/train-1/model-M"