-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathDESCRIPTION
69 lines (69 loc) · 3.06 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
Package: fdapace
Type: Package
Title: Functional Data Analysis and Empirical Dynamics
URL: https://github.com/functionaldata/tPACE
BugReports: https://github.com/functionaldata/tPACE/issues
Version: 0.6.0
Encoding: UTF-8
Date: 2024-07-02
Language: en-US
Authors@R: c(person("Yidong", "Zhou", email="[email protected]", role=c("cre","aut"), comment=c(ORCID="0000-0003-1423-1857")),
person("Han", "Chen", role=c("aut")),
person("Su I", "Iao", role=c("aut")),
person("Poorbita", "Kundu", role=c("aut")),
person("Hang", "Zhou", role=c("aut")),
person("Satarupa","Bhattacharjee", role=c("aut")),
person("Cody","Carroll", role=c("aut"), comment=c(ORCID="0000-0003-3525-8653")),
person("Yaqing","Chen", role=c("aut")),
person("Xiongtao","Dai", role=c("aut")),
person("Jianing","Fan", role=c("aut")),
person("Alvaro","Gajardo", role=c("aut")),
person("Pantelis Z.","Hadjipantelis", role=c("aut")),
person("Kyunghee","Han", role="aut"),
person("Hao","Ji", role=c("aut")),
person("Changbo","Zhu", role=c("aut")),
person("Paromita", "Dubey", role="ctb"),
person("Shu-Chin", "Lin", role="ctb"),
person("Hans-Georg", "Müller", role=c("cph","ths","aut")),
person("Jane-Ling", "Wang", role=c("cph","ths","aut")))
Maintainer: Yidong Zhou <[email protected]>
Description: A versatile package that provides implementation of various
methods of Functional Data Analysis (FDA) and Empirical Dynamics. The core of this
package is Functional Principal Component Analysis (FPCA), a key technique for
functional data analysis, for sparsely or densely sampled random trajectories
and time courses, via the Principal Analysis by Conditional Estimation
(PACE) algorithm. This core algorithm yields covariance and mean functions,
eigenfunctions and principal component (scores), for both functional data and
derivatives, for both dense (functional) and sparse (longitudinal) sampling designs.
For sparse designs, it provides fitted continuous trajectories with confidence bands,
even for subjects with very few longitudinal observations. PACE is a viable and
flexible alternative to random effects modeling of longitudinal data. There is also a
Matlab version (PACE) that contains some methods not available on fdapace and vice
versa. Updates to fdapace were supported by grants from NIH Echo and NSF DMS-1712864 and DMS-2014626.
Please cite our package if you use it (You may run the command citation("fdapace") to get the citation format and bibtex entry).
References: Wang, J.L., Chiou, J., Müller, H.G. (2016) <doi:10.1146/annurev-statistics-041715-033624>; Chen, K., Zhang, X., Petersen, A., Müller, H.G. (2017) <doi:10.1007/s12561-015-9137-5>.
License: BSD_3_clause + file LICENSE
LazyData: false
Imports:
Rcpp (>= 0.11.5),
Hmisc,
MASS,
Matrix,
pracma,
numDeriv
LinkingTo: Rcpp, RcppEigen
Suggests:
plot3D,
rgl,
aplpack,
mgcv,
ks,
gtools,
knitr,
rmarkdown,
EMCluster,
minqa,
testthat
NeedsCompilation: yes
RoxygenNote: 7.3.1
VignetteBuilder: knitr