-
Notifications
You must be signed in to change notification settings - Fork 25
/
e_logl.c
387 lines (363 loc) · 12.7 KB
/
e_logl.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
/* logll.c
*
* Natural logarithm for 128-bit long double precision.
*
*
*
* SYNOPSIS:
*
* long double x, y, logl();
*
* y = logl( x );
*
*
*
* DESCRIPTION:
*
* Returns the base e (2.718...) logarithm of x.
*
* The argument is separated into its exponent and fractional
* parts. Use of a lookup table increases the speed of the routine.
* The program uses logarithms tabulated at intervals of 1/128 to
* cover the domain from approximately 0.7 to 1.4.
*
* On the interval [-1/128, +1/128] the logarithm of 1+x is approximated by
* log(1+x) = x - 0.5 x^2 + x^3 P(x) .
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE 0.875, 1.125 100000 1.2e-34 4.1e-35
* IEEE 0.125, 8 100000 1.2e-34 4.1e-35
*
*
* WARNING:
*
* This program uses integer operations on bit fields of floating-point
* numbers. It does not work with data structures other than the
* structure assumed.
*
*/
/* Copyright 2001 by Stephen L. Moshier <[email protected]>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef __FDLIBM_H__
#include "fdlibm.h"
#endif
#ifndef __NO_LONG_DOUBLE_MATH
#ifndef __have_fpu_log
long double __ieee754_logl(long double x)
{
#if 0
long double z, y, w;
long double u, t;
uint32_t m, k;
int32_t e;
uint32_t msw, lsw;
/* log(1+x) = x - .5 x^2 + x^3 l(x)
-.0078125 <= x <= +.0078125
peak relative error 1.2e-37 */
static const long double l3 = 3.333333333333333333333333333333336096926E-1L;
static const long double l4 = -2.499999999999999999999999999486853077002E-1L;
static const long double l5 = 1.999999999999999999999999998515277861905E-1L;
static const long double l6 = -1.666666666666666666666798448356171665678E-1L;
static const long double l7 = 1.428571428571428571428808945895490721564E-1L;
static const long double l8 = -1.249999999999999987884655626377588149000E-1L;
static const long double l9 = 1.111111111111111093947834982832456459186E-1L;
static const long double l10 = -1.000000000000532974938900317952530453248E-1L;
static const long double l11 = 9.090909090915566247008015301349979892689E-2L;
static const long double l12 = -8.333333211818065121250921925397567745734E-2L;
static const long double l13 = 7.692307559897661630807048686258659316091E-2L;
static const long double l14 = -7.144242754190814657241902218399056829264E-2L;
static const long double l15 = 6.668057591071739754844678883223432347481E-2L;
/* Lookup table of ln(t) - (t-1)
t = 0.5 + (k+26)/128)
k = 0, ..., 91 */
static const long double logtbl[92] = {
-5.5345593589352099112142921677820359632418E-2L,
-5.2108257402767124761784665198737642086148E-2L,
-4.8991686870576856279407775480686721935120E-2L,
-4.5993270766361228596215288742353061431071E-2L,
-4.3110481649613269682442058976885699556950E-2L,
-4.0340872319076331310838085093194799765520E-2L,
-3.7682072451780927439219005993827431503510E-2L,
-3.5131785416234343803903228503274262719586E-2L,
-3.2687785249045246292687241862699949178831E-2L,
-3.0347913785027239068190798397055267411813E-2L,
-2.8110077931525797884641940838507561326298E-2L,
-2.5972247078357715036426583294246819637618E-2L,
-2.3932450635346084858612873953407168217307E-2L,
-2.1988775689981395152022535153795155900240E-2L,
-2.0139364778244501615441044267387667496733E-2L,
-1.8382413762093794819267536615342902718324E-2L,
-1.6716169807550022358923589720001638093023E-2L,
-1.5138929457710992616226033183958974965355E-2L,
-1.3649036795397472900424896523305726435029E-2L,
-1.2244881690473465543308397998034325468152E-2L,
-1.0924898127200937840689817557742469105693E-2L,
-9.6875626072830301572839422532631079809328E-3L,
-8.5313926245226231463436209313499745894157E-3L,
-7.4549452072765973384933565912143044991706E-3L,
-6.4568155251217050991200599386801665681310E-3L,
-5.5356355563671005131126851708522185605193E-3L,
-4.6900728132525199028885749289712348829878E-3L,
-3.9188291218610470766469347968659624282519E-3L,
-3.2206394539524058873423550293617843896540E-3L,
-2.5942708080877805657374888909297113032132E-3L,
-2.0385211375711716729239156839929281289086E-3L,
-1.5522183228760777967376942769773768850872E-3L,
-1.1342191863606077520036253234446621373191E-3L,
-7.8340854719967065861624024730268350459991E-4L,
-4.9869831458030115699628274852562992756174E-4L,
-2.7902661731604211834685052867305795169688E-4L,
-1.2335696813916860754951146082826952093496E-4L,
-3.0677461025892873184042490943581654591817E-5L,
#define ZERO logtbl[38]
0.0000000000000000000000000000000000000000E0L,
-3.0359557945051052537099938863236321874198E-5L,
-1.2081346403474584914595395755316412213151E-4L,
-2.7044071846562177120083903771008342059094E-4L,
-4.7834133324631162897179240322783590830326E-4L,
-7.4363569786340080624467487620270965403695E-4L,
-1.0654639687057968333207323853366578860679E-3L,
-1.4429854811877171341298062134712230604279E-3L,
-1.8753781835651574193938679595797367137975E-3L,
-2.3618380914922506054347222273705859653658E-3L,
-2.9015787624124743013946600163375853631299E-3L,
-3.4938307889254087318399313316921940859043E-3L,
-4.1378413103128673800485306215154712148146E-3L,
-4.8328735414488877044289435125365629849599E-3L,
-5.5782063183564351739381962360253116934243E-3L,
-6.3731336597098858051938306767880719015261E-3L,
-7.2169643436165454612058905294782949315193E-3L,
-8.1090214990427641365934846191367315083867E-3L,
-9.0486422112807274112838713105168375482480E-3L,
-1.0035177140880864314674126398350812606841E-2L,
-1.1067990155502102718064936259435676477423E-2L,
-1.2146457974158024928196575103115488672416E-2L,
-1.3269969823361415906628825374158424754308E-2L,
-1.4437927104692837124388550722759686270765E-2L,
-1.5649743073340777659901053944852735064621E-2L,
-1.6904842527181702880599758489058031645317E-2L,
-1.8202661505988007336096407340750378994209E-2L,
-1.9542647000370545390701192438691126552961E-2L,
-2.0924256670080119637427928803038530924742E-2L,
-2.2346958571309108496179613803760727786257E-2L,
-2.3810230892650362330447187267648486279460E-2L,
-2.5313561699385640380910474255652501521033E-2L,
-2.6856448685790244233704909690165496625399E-2L,
-2.8438398935154170008519274953860128449036E-2L,
-3.0058928687233090922411781058956589863039E-2L,
-3.1717563112854831855692484086486099896614E-2L,
-3.3413836095418743219397234253475252001090E-2L,
-3.5147290019036555862676702093393332533702E-2L,
-3.6917475563073933027920505457688955423688E-2L,
-3.8723951502862058660874073462456610731178E-2L,
-4.0566284516358241168330505467000838017425E-2L,
-4.2444048996543693813649967076598766917965E-2L,
-4.4356826869355401653098777649745233339196E-2L,
-4.6304207416957323121106944474331029996141E-2L,
-4.8285787106164123613318093945035804818364E-2L,
-5.0301169421838218987124461766244507342648E-2L,
-5.2349964705088137924875459464622098310997E-2L,
-5.4431789996103111613753440311680967840214E-2L,
-5.6546268881465384189752786409400404404794E-2L,
-5.8693031345788023909329239565012647817664E-2L,
-6.0871713627532018185577188079210189048340E-2L,
-6.3081958078862169742820420185833800925568E-2L,
-6.5323413029406789694910800219643791556918E-2L,
-6.7595732653791419081537811574227049288168E-2L
};
/* ln(2) = ln2a + ln2b with extended precision. */
static const long double ln2a = 6.93145751953125e-1L;
static const long double ln2b = 1.4286068203094172321214581765680755001344E-6L;
static const long double ldbl_epsilon = hexconstl(0x1p-106L, 1.2325951644078309459558e-32L, 0x3f95, UC(0x80000000), UC(0x00000000));
u = x;
GET_LDOUBLE_WORDS(m, msw, lsw, u);
msw &= IC(0x7fffffff);
/* Check for IEEE special cases. */
k = ((m & 0x7fff) << 16) | (msw >> 16);
/* log(0) = -infinity. */
if ((k | (msw & UC(0x7fffffff)) | lsw) == 0)
{
return -0.5L / ZERO;
}
/* log ( x < 0 ) = NaN */
if (m & 0x8000)
{
return (x - x) / ZERO;
}
/* log (infinity or NaN) */
if (k >= UC(0x7fff0000))
{
return x + x;
}
/* On this interval the table is not used due to cancellation error. */
if (x <= 1.0078125L && x >= 0.9921875L)
{
if (x == 1.0L)
return 0.0L;
z = x - 1.0L;
k = 64;
t = 1.0L;
e = 0;
} else
{
/* Extract exponent and reduce domain to 0.703125 <= u < 1.40625 */
e = m - 0x3ffe;
SET_LDOUBLE_EXP(u, 0x3ffe);
m = (msw >> 16) | IC(0x10000);
/* Find lookup table index k from high order bits of the significand. */
if (m < UC(0x16800))
{
k = (m - UC(0xff00)) >> 9;
/* t is the argument 0.5 + (k+26)/128
of the nearest item to u in the lookup table. */
SET_LDOUBLE_WORDS(t, 0x3fff, (k << 25) | UC(0x80000000), 0);
SET_LDOUBLE_EXP(u, 0x3fff);
e -= 1;
k += 64;
} else
{
k = (m - UC(0xfe00)) >> 10;
SET_LDOUBLE_WORDS(t, 0x3ffe, (k << 26) | UC(0x80000000), 0);
}
/* log(u) = log( t u/t ) = log(t) + log(u/t)
log(t) is tabulated in the lookup table.
Express log(u/t) = log(1+z), where z = u/t - 1 = (u-t)/t.
cf. Cody & Waite. */
z = (u - t) / t;
}
/* Series expansion of log(1+z). */
w = z * z;
/* Avoid spurious underflows. */
if (w <= ldbl_epsilon)
y = 0.0L;
else
{
y = ((((((((((((l15 * z
+ l14) * z
+ l13) * z
+ l12) * z
+ l11) * z
+ l10) * z
+ l9) * z
+ l8) * z
+ l7) * z
+ l6) * z
+ l5) * z
+ l4) * z
+ l3) * z * w;
y -= 0.5 * w;
}
y += e * ln2b; /* Base 2 exponent offset times ln(2). */
y += z;
y += logtbl[k - 26]; /* log(t) - (t-1) */
y += (t - 1.0L);
y += e * ln2a;
return y;
#undef ZERO
#else
long double hfsq, f, s, z, R, w, t1, t2, dk;
int32_t k, hx, i, j;
uint32_t lx;
uint32_t m;
static const long double ln2_hi = 6.93145751953125e-1L;
static const long double ln2_lo = 1.4286068203094172321214581765680755001344E-6L;
static const long double Lg1 = 6.666666666666735130e-01L; /* 3FE55555 55555593 */
static const long double Lg2 = 3.999999999940941908e-01L; /* 3FD99999 9997FA04 */
static const long double Lg3 = 2.857142874366239149e-01L; /* 3FD24924 94229359 */
static const long double Lg4 = 2.222219843214978396e-01L; /* 3FCC71C5 1D8E78AF */
static const long double Lg5 = 1.818357216161805012e-01L; /* 3FC74664 96CB03DE */
static const long double Lg6 = 1.531383769920937332e-01L; /* 3FC39A09 D078C69F */
static const long double Lg7 = 1.479819860511658591e-01L; /* 3FC2F112 DF3E5244 */
static const long double zero = 0.0;
GET_LDOUBLE_WORDS(m, hx, lx, x);
k = m & 0x7fff;
/* log(0) = -infinity. */
if ((k | (hx & UC(0x7fffffff)) | lx) == 0)
{
return -0.5L / zero;
}
if (m & 0x8000)
return (x - x) / zero; /* log(-#) = NaN */
/* log (infinity or NaN) */
if (k >= 0x7fff)
return x + x;
k -= 0x3fff;
hx &= IC(0x7fffffff);
i = (((hx >> 11) + IC(0x95f64)) & IC(0x100000)) >> 20;
SET_LDOUBLE_EXP(x, i ^ 0x3fff); /* normalize x or x/2 */
k += i;
f = x - 1.0;
#if 0
if ((IC(0x7fffffff) & (2 + hx)) < 3)
{ /* |f| < 2**-20 */
if (f == zero)
{
if (k == 0)
return zero;
dk = (long double) k;
return dk * ln2_hi + dk * ln2_lo;
}
R = f * f * (0.5L - 0.33333333333333333333333333L * f);
if (k == 0)
return f - R;
dk = (long double) k;
return dk * ln2_hi - ((R - dk * ln2_lo) - f);
}
#endif
s = f / (2.0 + f);
dk = (long double) k;
z = s * s;
i = hx - IC(0x6147a000);
w = z * z;
j = IC(0x6b851000) - hx;
t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
i |= j;
R = t2 + t1;
if (i > 0)
{
hfsq = 0.5 * f * f;
if (k == 0)
return f - (hfsq - s * (hfsq + R));
return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
}
if (k == 0)
return f - s * (f - R);
return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
#endif
}
#endif
/* wrapper logl(x) */
long double __logl(long double x)
{
if (islessequal(x, 0.0L) && _LIB_VERSION != _IEEE_)
{
if (x == 0.0L)
{
feraiseexcept(FE_DIVBYZERO);
return __kernel_standard_l(x, x, -HUGE_VALL, KMATHERRL_LOG_ZERO); /* log(0) */
} else
{
feraiseexcept(FE_INVALID);
return __kernel_standard_l(x, x, __builtin_nanl(""), KMATHERRL_LOG_MINUS); /* log(x<0) */
}
}
return __ieee754_logl(x);
}
__typeof(__logl) logl __attribute__((weak, alias("__logl")));
#endif