-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCorrelaciones.Rmd
1244 lines (1069 loc) · 31.3 KB
/
Correlaciones.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
title: "R Notebook"
output:
html_document:
df_print: paged
fig_width: 12
fig_height: 4
---
# Leemos los df
```{r}
library(ggplot2)
# install.packages('pacman')
pacman::p_load(forecast)
dev.new(width=12, height=5)
knitr::opts_chunk$set(fig.width=12, fig.height=5)
# install.packages('tidyverse')
df_train = read.csv('data/train.csv')
df_train$Date = as.Date(df_train$Date)
df_test = read.csv('data/test.csv')
df_store = read.csv('data/store.csv')
head(df_store)
head(df_train)
head(df_test)
```
# Store con minima distancia
```{r}
min(df_store[!is.na(df_store$CompetitionDistance),'CompetitionDistance'])
```
```{r}
df_store[df_store$CompetitionDistance==20,]
```
# Obtenemos las stores de test
```{r}
stores_test = unique(df_test$Store)
```
#Filtramos del DF las stores de test
```{r}
df_train_filtered = df_train[df_train$Store %in% stores_test, ]
head(df_train_filtered)
```
# Filtramos la tienda 1
```{r}
df_train_tienda_1 = df_train_filtered[df_train_filtered$Store==1,]
head(df_train_tienda_1)
```
# Filtramos la tienda 3
```{r}
df_train_tienda_3 = df_train_filtered[df_train_filtered$Store==3,]
head(df_train_tienda_3)
```
# Chequeo de la cantidad de días con venta en el día domingo
```{r}
nrow(df_train_filtered[(df_train_filtered$DayOfWeek==7),])
nrow(df_train_filtered[(df_train_filtered$DayOfWeek==7)&(df_train_filtered$Sales==0),])
```
# Correlación cruzada con convolve de la ventas tienda 1, y clientes
```{r fig.width=6, fig.height=4}
df_train_tienda_1$ventas_clientes = convolve(df_train_tienda_1$Sales, df_train_tienda_1$Customers, conj = TRUE)
ggplot(df_train_tienda_1, aes(x = Date, y = ventas_clientes)) +
geom_line(color="green", size = 1.2) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
ggtitle("Cantidad de ventas a lo largo de los últimos años")
```
# Correlación cruzada Clientes Ventas
```{r}
ggCcf(df_train_tienda_1$Customers, df_train_tienda_1$Sales,lag.max = 300)
```
# Autocorrelación de la serie de ventas
```{r}
ggAcf(df_train_tienda_1$Sales, lag.max = length(df_train_tienda_1$Sales))
```
# Correlación cruzada tienda 1 y 3
```{r}
ggplot(df_train_tienda_1, aes(x = Date, y = Sales)) +
geom_line(color="red", size = 1.2) +
theme_minimal() +
theme(axis.text.x = element_text(angle = 90, hjust = 1)) +
ggtitle("Ventas Tienda 1") +
xlab("Fecha") +
ylab("Ventas")
```
```{r}
ggCcf(df_train_tienda_1$Sales,df_train_tienda_3$Sales)
```
```{r}
library(tidyverse)
library(ggplot2)
library(tsibble)
library(feasts)
y <- tsibble(
Date = df_train_tienda_1$Date,
Sales = df_train_tienda_1$Sales,
index = Date
)
autoplot(y,Sales) +
labs(title = "Ventas diarias Tienda 1",
y = "Ventas", x='Fecha')
```
#Filtrando cuando se encuentra cerrado
```{r}
melsyd_economy <- df_train_filtered %>%
filter(Open == 1, Store == 1) %>%
as_tsibble(index = Date)
autoplot(melsyd_economy, Sales) +
labs(title = "Ventas - Domingos y feriados filtrados")
```
```{r}
melsyd_economy <- df_train_filtered %>%
filter(Store == 1) %>%
mutate(Sales = ifelse(Open == 1, Sales, NA),
Customers = ifelse(Open == 1, Customers, NA),
Promo = ifelse(Open == 1, Promo, NA),
StateHoliday = ifelse(Open == 1, StateHoliday, NA),
SchoolHoliday = ifelse(Open == 1, SchoolHoliday, NA),
) %>%
as_tsibble(index = Date)
```
# Se puede observar cierta estacionalidad a lo largo del año
```{r}
melsyd_economy %>%
gg_season(Sales, labels = "both") +
labs(title = "Seasonal plot")
```
# Estacionalidad semanal
```{r}
melsyd_economy %>% gg_season(Sales, period = "week") +
theme(legend.position = "none") +
labs(title="Weekly Seasonality")
```
# Boxplots estacionalidad semanal
```{r}
ggplot(melsyd_economy %>%
filter(Open==1) %>%
mutate(DayOfWeek = as.factor(DayOfWeek)), aes(x= DayOfWeek, y=Sales, color = DayOfWeek)) +
geom_boxplot()+
labs(title = "Ventas diarias Tienda 1",
y = "Ventas", x='Día de la semana')
```
# La mediana y los extramos de la caja se comportan de manera distinta dependiendo el día de la semana
# Estacionalidad anual
```{r}
melsyd_economy %>% gg_season(Sales, period = "year") +
theme(legend.position = "none") +
labs(title="Year Seasonality")
```
#Subseries Plot, estacionalidad dentro de la semana
```{r}
melsyd_economy %>%
gg_subseries(Sales,period = 'week') +
labs(title = "Ventas por día de la semana en Tienda 1",
y = "Ventas", x='Día de la semana')
```
# Venta a lo largo del día del mes
```{r}
melsyd_economy %>%
gg_subseries(Sales,period = 'month') +
labs(title = "Ventas por día del mes en Tienda 1",
y = "Ventas", x='Día del mes')
```
# Boxplot Estacionalidad a lo largo del mes
```{r}
ggplot(melsyd_economy %>%
filter(Open==1) %>%
mutate(DayOfMonth = as.factor(lubridate::day(Date))), aes(x= DayOfMonth, y=Sales, color = DayOfMonth)) +
geom_boxplot()+
labs(title = "Ventas por día del mes para la Tienda 1",
y = "Ventas", x='Día del mes')
```
# Días para que termine el mes
```{r}
ggplot(melsyd_economy %>%
filter(Open==1) %>%
mutate(DayToEndOfMonth = as.factor(lubridate::days_in_month(Date) - lubridate::day(Date))), aes(x= DayToEndOfMonth, y=Sales, color = DayToEndOfMonth)) +
geom_boxplot()
```
# Cuando faltan pocos días para que termine el mes la venta es alta.
# Día posterior a día cerrado
```{r}
ggplot(melsyd_economy %>%
mutate(Abierto_Dia_Anterior = as.factor(lag(Open))) %>%
filter(Open==1) , aes(x= Abierto_Dia_Anterior, y=Sales, color = Abierto_Dia_Anterior)) +
geom_boxplot()+
labs(title = "Ventas diarias Tienda 1",
y = "Ventas", x='Se encontraba abierto el día anterior?')
```
# Día posterior a día cerrado, excluyendo lunes, dado que todos los domingos se encuentra cerrado
```{r}
ggplot(melsyd_economy %>%
mutate(Abierto_Dia_Anterior = as.factor(lag(Open))) %>%
filter(Open==1, DayOfWeek!=1) , aes(x= Abierto_Dia_Anterior, y=Sales, color = Abierto_Dia_Anterior)) +
geom_boxplot()
```
# Boxplots Efecto de vacaciones de escuela
```{r}
ggplot(melsyd_economy %>%
filter(Open==1) %>%
mutate(SchoolHoliday = as.factor(SchoolHoliday)), aes(x= SchoolHoliday, y=Sales, color = SchoolHoliday)) +
geom_boxplot()+
labs(title = "Ventas diarias Tienda 1",
y = "Ventas", x='Ese día es vacaciones escolares?')
```
# La mediana parece ser más baja, no obstante hay mucho solapamiento
```{r}
melsyd_economy %>%
autoplot(Customers) +
labs(title = "Clientes diarios Tienda 1",
y = "Clientes", x='Fecha')
```
# Scatter Plot Clientes y Ventas
```{r}
melsyd_economy %>%
ggplot(aes(x = Customers, y = Sales)) +
geom_point()
```
# Alta correlación entre clientes y ventas
```{r}
cor(df_train_tienda_1$Customers, df_train_tienda_1$Sales)
cor(df_train_tienda_1$Customers, df_train_tienda_1$Sales, method = 'spearman')
```
# Lag Plots
# Scatter plot contra diferentes lags, a medida que nos alejamos en el tiempo, se encuentran menos relacionadas
```{r}
melsyd_economy %>%
gg_lag(Sales, geom = "point") +
labs(x = "lag(Sales, k)")
```
# Scatter Plot para diferentes lags
```{r}
melsyd_economy %>%
gg_lag(Sales, geom = "point", lags = c(1,2,3,7,14,30,365) ) +
labs(x = "lag(Sales, k)")
```
# Autocorrelacion 40 lags
```{r}
melsyd_economy %>%
ACF(Sales, lag_max = 40, na.action = na.pass) %>%
autoplot() + labs(title="Sales")
```
# Autocorrelacion 400 lags
```{r}
melsyd_economy %>%
ACF(Sales, lag_max = 400, na.action = na.pass) %>%
autoplot() + labs(title="Sales")
```
# Para lags pequeños tenemos una alta correlación, cada 7 días se ven picos, lo que indica que hay cierta estacionalidad
# También vemos un pico grande aproximadamente al año
# Cuando hay tendencia, suele haber una autocorrelación alta y positiva en los lags pequeños, valores cercanos en tiempo, cercanos también en valor
# Cuando la data es estacional, las autocorrelaciones son altas para los lags estacionales (en múltiplos de dichos lags)
# Descomponemos la serie en Tendencia, Estacionalidad Anual y Estacionalidad Semanal
```{r}
melsyd_economy_2 <- df_train_filtered %>%
filter(Store == 1) %>%
# mutate(Sales = ifelse(Open == 1, Sales, NA),
# Customers = ifelse(Open == 1, Customers, NA),
# Promo = ifelse(Open == 1, Promo, NA),
# StateHoliday = ifelse(Open == 1, StateHoliday, NA),
# SchoolHoliday = ifelse(Open == 1, SchoolHoliday, NA),
# ) %>%
as_tsibble(index = Date)
dcmp <- melsyd_economy_2 %>%
model(stl = STL(Sales))
components(dcmp)
melsyd_economy_2 %>% autoplot(Sales)
components(dcmp) %>% autoplot()
```
```{r}
components(dcmp) %>%
as_tsibble() %>%
autoplot(Sales, colour="gray") +
geom_line(aes(y=trend), colour = "#D55E00") +
labs(
title = "Sales"
)
```
# Datos con estacionalidad ajustada
```{r}
components(dcmp) %>%
as_tsibble() %>%
autoplot(Sales, colour = "gray") +
geom_line(aes(y=season_adjust), colour = "#0072B2") +
labs(title = "Ventas diarias Tienda 1 <estacionalidad ajustada>",
y = "Ventas", x='Fecha')
```
# Moving Average 7
```{r}
# Considerando la serie completa
melsyd_economy_3 <- melsyd_economy_2 %>%
mutate(
`7-MA` = slider::slide_dbl(Sales, mean,
.before = 3, .after = 3, .complete = TRUE)
)
melsyd_economy_3 %>%
autoplot(Sales) +
geom_line(aes(y = `7-MA`), colour = "#D55E00") +
labs(y = "Ventas",
title = "Ventas diarias Tienda 1") +
guides(colour = guide_legend(title = "series"))
# Filtrando cuando se encuentra cerrado
melsyd_economy_3 <- melsyd_economy %>%
mutate(
`7-MA` = slider::slide_dbl(Sales, mean,
.before = 3, .after = 3, .complete = TRUE)
)
melsyd_economy_3 %>%
autoplot(Sales) +
geom_line(aes(y = `7-MA`), colour = "#D55E00") +
labs(y = "Ventas",
title = "Ventas diarias Tienda 1") +
guides(colour = guide_legend(title = "series"))
```
# Se puede calcular tendencia a partir de dos filtros moving average, en este caso, uno de 7 para la semana, y despues uno de 52 para el año (*) habría que chequearlo...
```{r}
melsyd_economy_4 <- melsyd_economy_2 %>%
mutate(
`12-MA` = slider::slide_dbl(Sales, mean,
.before = 3, .after = 3, .complete = TRUE),
`2x12-MA` = slider::slide_dbl(`12-MA`, mean,
.before = 26, .after = 26, .complete = TRUE)
)
melsyd_economy_4 %>%
autoplot(Sales, colour = "gray") +
geom_line(aes(y = `2x12-MA`), colour = "#D55E00") +
labs(y = "Ventas",
title = "Ventas diarias Tienda 1 <tendencia como suma de dos filtros MA>")
```
# Descomposición clásica
```{r}
melsyd_economy_2 %>%
model(
classical_decomposition(Sales, type = "additive")
# classical_decomposition(Sales~season(365), type = "additive")
) %>%
components() %>%
autoplot() +
labs(title = "Descomposición lineal aditiva para las ventas Tienda 1")
```
# Descomposiciones clásicas
```{r}
# install.packages("seasonal")
library(seasonal)
# No funca
# x11_dcmp <- melsyd_economy_2[,c('Date','Sales')] %>%
# model(x11 = X_13ARIMA_SEATS(Sales ~ x11(na.action = seasonal::na.x13))) %>%
# components()
# autoplot(x11_dcmp) +
# labs(title =
# "Decomposition of total US retail employment using X-11.")
#
# sum(is.na(melsyd_economy_2$Sales))
```
# STL Decomposition, varias ventajas, lo único, no considera estacionalidad intradiaria o dentro del calendario
```{r}
melsyd_economy_2 %>%
model(
STL(Sales ~ trend(window = 360) +
season(window = "periodic"),
robust = TRUE)) %>%
components() %>%
autoplot()+
labs(title = "Descomposición STL para las ventas Tienda 1")
```
# STL Features
```{r}
melsyd_economy_2 %>%
features(Sales, feat_stl)
```
# BenchMark Models
# Filter Data for train
```{r}
df_train_tienda_1_train <- melsyd_economy_2 %>%
filter(Date<'2015-01-01')
```
```{r}
# install.packages('fable')
library(fable)
```
# Mean
```{r}
df_train_tienda_1_train %>% model(MEAN(Sales))
```
# Naive last value
```{r}
df_train_tienda_1_train %>% model(NAIVE(Sales))
```
# Naive last cycle (seasonal) Year
```{r}
df_train_tienda_1_train %>% model(SNAIVE(Sales ~ lag("year")))
```
# Naive last cycle (seasonal) Week
```{r}
df_train_tienda_1_train %>% model(SNAIVE(Sales ~ lag("week")))
```
# Drift
```{r}
df_train_tienda_1_train %>% model(RW(Sales ~ drift()))
```
# Different Models including 0
```{r}
# Set training data from 1992 to 2006
# train <- aus_production %>%
# filter_index("1992 Q1" ~ "2006 Q4")
# Fit the models
beer_fit <- df_train_tienda_1_train %>%
model(
Mean = MEAN(Sales),
`Naïve` = NAIVE(Sales),
`Seasonal naïve` = SNAIVE(Sales)
)
# Generate forecasts for 14 quarters
beer_fc <- beer_fit %>% forecast(h = 42)
# Plot forecasts against actual values
beer_fc %>%
autoplot(df_train_tienda_1_train, level = NULL) +
autolayer( df_train_tienda_1_train %>%
filter(Date>="2015-01-01") %>%
select(Sales),
colour = "black"
) +
labs(
title = "Forecasts para las ventas Tienda 1"
) +
guides(colour = guide_legend(title = "Forecast"))
```
# Different Models Zeros as Null
```{r}
# Set training data from 1992 to 2006
# train <- aus_production %>%
# filter_index("1992 Q1" ~ "2006 Q4")
# Fit the models
beer_fit <- melsyd_economy %>%
model(
# Actual_Sales = Sales,
Mean = MEAN(Sales),
`Naïve` = NAIVE(Sales),
`Seasonal naïve (week)` = SNAIVE(Sales ~ lag("week")),
`Seasonal naïve (year)` = SNAIVE(Sales ~ lag("year")),
)
# Generate forecasts for 14 quarters
beer_fc <- beer_fit %>% forecast(h = 42)
# Plot forecasts against actual values
beer_fc %>%
autoplot(melsyd_economy
# %>% filter(Date>="2014-10-20")
, level = NULL) +
autolayer( melsyd_economy %>%
filter(Date>="2015-01-01") %>%
select(Sales),
colour = "black"
) +
labs(
title = "Forecasts para las ventas Tienda 1"
) +
guides(colour = guide_legend(title = "Forecast"))
```
# Simple Models
```{r}
# Set training data from 1992 to 2006
# train <- aus_production %>%
# filter_index("1992 Q1" ~ "2006 Q4")
# Fit the models
beer_fit <- melsyd_economy %>%
filter(Date<"2015-01-01") %>%
model(
# Actual_Sales = Sales,
Mean = MEAN(Sales),
`Naïve` = NAIVE(Sales),
`Seasonal naïve (week)` = SNAIVE(Sales ~ lag("week")),
# `Seasonal naïve (year)` = SNAIVE(Sales ~ lag("year")),
)
# Generate forecasts for 14 quarters
beer_fc <- beer_fit %>% forecast(h = 42)
# Plot forecasts against actual values
beer_fc %>%
autoplot(melsyd_economy
%>% filter(Date>="2014-10-20")
, level = NULL) +
autolayer( melsyd_economy %>%
filter(Date>="2015-01-01") %>%
select(Sales),
colour = "black"
) +
labs(
title = "Forecasts para las ventas Tienda 1"
) +
guides(colour = guide_legend(title = "Forecast"))
```
# Ajustando el formato
```{r}
df_train_tienda_1 <- df_train_tienda_1 %>%
as_tsibble(index = Date)
```
# Simple Models
```{r}
# Set training data from 1992 to 2006
# train <- aus_production %>%
# filter_index("1992 Q1" ~ "2006 Q4")
# Fit the models
beer_fit <- df_train_tienda_1 %>%
filter(Date<"2015-01-01") %>%
model(
# Actual_Sales = Sales,
Mean = MEAN(Sales),
`Naïve` = NAIVE(Sales),
`Seasonal naïve (week)` = SNAIVE(Sales ~ lag("week")),
# `Seasonal naïve (year)` = SNAIVE(Sales ~ lag("year")),
)
# Generate forecasts for 14 quarters
beer_fc <- beer_fit %>% forecast(h = 42)
# Plot forecasts against actual values
beer_fc %>%
autoplot(df_train_tienda_1
%>% filter(Date>="2014-10-20")
, level = NULL) +
autolayer( df_train_tienda_1 %>%
filter(Date>="2015-01-01") %>%
select(Sales),
colour = "black"
) +
labs(
title = "Forecasts para las ventas Tienda 1"
) +
guides(colour = guide_legend(title = "Forecast"))
```
# Para ver los valoes del fit, residuos y residuos innovados (cambio de escala)
```{r}
augment(beer_fit)
```
<!-- 5.4 Residual diagnostics -->
<!-- A good forecasting method will yield innovation residuals with the following properties: -->
<!-- The innovation residuals are uncorrelated. If there are correlations between innovation residuals, then there is information left in the residuals which should be used in computing forecasts. -->
<!-- The innovation residuals have zero mean. If they have a mean other than zero, then the forecasts are biased. -->
<!-- In addition to these essential properties, it is useful (but not necessary) for the residuals to also have the following two properties. -->
<!-- The innovation residuals have constant variance. This is known as “homoscedasticity”. -->
<!-- The innovation residuals are normally distributed. -->
# Residuos
```{r}
aug <- df_train_tienda_1 %>%
model(SNAIVE(Sales ~ lag("week"))) %>%
augment()
autoplot(aug, .innov) +
labs(title = "Residuos del método naïve")
```
# Histograma Residuos
```{r}
aug %>%
ggplot(aes(x = .innov)) +
geom_histogram() +
labs(title = "Histograma de los residuos")
```
# Autocorrelacion de los residuos
```{r}
aug %>%
ACF(.innov) %>%
autoplot() +
labs(title = "Residuos del método naïve")
```
# Se pueden ver algunas autocorrelaciones altas.
# Tres gráficos en 1, Residuos a lo largo del tiempo, autocorrelación e histograma
```{r}
df_train_tienda_1 %>%
model(SNAIVE(Sales ~ lag("week"))) %>%
gg_tsresiduals()
```
# Intervalos de predicción
```{r}
df_train_tienda_1 %>%
model(SNAIVE(Sales ~ lag("week"))) %>%
forecast(h = 42) %>%
autoplot(df_train_tienda_1) +
labs(title="Forecast de Ventas <intervalos de predicción SNAIVE>", y="$US" )
```
# Intervalos de predicción
```{r}
melsyd_economy %>%
model(SNAIVE(Sales ~ lag("week"))) %>%
forecast(h = 42) %>%
autoplot(melsyd_economy) +
labs(title="Forecast de ventas <Intervalos de predicción SNAIVE>", y="Ventas" )
```
# Intervalos de predicción
```{r}
melsyd_economy %>%
model(NAIVE(Sales)) %>%
forecast(h = 42) %>%
autoplot(melsyd_economy) +
labs(title="Forecast de ventas <Intervalos de predicción SNAIVE>", y="Ventas" )
```
# Forecast for the last 42 days (6 weeks)
```{r}
recent_production <- melsyd_economy %>%
slice(n()-42:0)
beer_train <- melsyd_economy %>%
slice(1:(n()-43))
beer_fit <- beer_train %>%
model(
Mean = MEAN(Sales),
`Naïve` = NAIVE(Sales),
`Seasonal naïve` = SNAIVE(Sales),
Drift = RW(Sales ~ drift())
)
beer_fc <- beer_fit %>%
forecast(h = 42)
beer_fc %>%
autoplot(
melsyd_economy %>% slice(n()-134:0),
level = NULL
) +
labs(title="Forecast de ventas", y="Ventas" ) +
guides(colour = guide_legend(title = "Forecast"))
```
# Accuracy metrics
```{r}
accuracy(beer_fc, recent_production)
```
# Forecast for the last 42 days (6 weeks)
```{r}
recent_production <- melsyd_economy_2 %>%
slice(n()-42:0)
beer_train <- melsyd_economy_2 %>%
slice(1:(n()-43))
beer_fit <- beer_train %>%
model(
Mean = MEAN(Sales),
`Naïve` = NAIVE(Sales),
`Seasonal naïve` = SNAIVE(Sales),
Drift = RW(Sales ~ drift())
)
beer_fc <- beer_fit %>%
forecast(h = 42)
beer_fc %>%
autoplot(
melsyd_economy_2 %>% slice(n()-134:0),
level = NULL
) +
labs(title="Forecast de ventas", y="Ventas" ) +
guides(colour = guide_legend(title = "Forecast"))
```
# Accuracy metrics evaluación del modelo
```{r}
accuracy(beer_fc, recent_production)
```
# Walk forward validation (CV cross validation)
# Create Training Test Partitions
```{r}
# Time series cross-validation accuracy
google_2015_tr <- melsyd_economy_2 %>%
stretch_tsibble(.init = 731, .step = 42) %>% # Toma al menos los primeros dos años y va tomando de a 6 semanas para testear
relocate(Date, .id)
google_2015_tr
```
# Cross validation
```{r}
rbind(
# TSCV accuracy
google_2015_tr %>%
model(RW(Sales ~ drift())) %>%
forecast(h = 1) %>%
accuracy(melsyd_economy_2)
,
# Training set accuracy
melsyd_economy_2 %>%
model(RW(Sales ~ drift())) %>%
accuracy()
)
```
# Cross validation
```{r}
# TSCV accuracy
rbind(
google_2015_tr %>%
model(SNAIVE(Sales)) %>%
forecast(h = 42) %>%
accuracy(melsyd_economy_2)
,
# Training set accuracy
melsyd_economy_2 %>%
model(SNAIVE(Sales)) %>%
accuracy()
)
```
# Regresion Lineal
```{r}
fit_beer <- recent_production %>%
model(TSLM(Sales ~ trend() + season()))
report(fit_beer)
```
# Regresion Lineal
```{r}
melsyd_economy_rl = melsyd_economy_2 %>%
filter(Date<"2015-06-19")
melsyd_economy_rl$DayOfWeek = as.factor(melsyd_economy_rl$DayOfWeek)
fit_beer <- melsyd_economy_rl %>%
model(TSLM(Sales ~ Open * (DayOfWeek + Date) - Open - DayOfWeek - Date))
# model(TSLM(Sales ~ Date))
report(fit_beer)
```
```{r}
recent_production <- melsyd_economy_2 %>%
slice(n()-42:0)
recent_production$DayOfWeek = as.factor(recent_production$DayOfWeek)
fc_beer <- forecast(fit_beer, new_data = recent_production)
fc_beer %>%
autoplot(recent_production) +
labs(
title = "Forecast de ventas usando regresión"
)
```
# Métricas del modelo
```{r}
accuracy(fc_beer, recent_production)
```
# Exponential Smoothing
```{r}
# # install.packages('forecast')
# library(Rcpp)
# library(forecast)
# # Estimate parameters
fit <- melsyd_economy_2 %>%
filter(Date<"2015-06-19") %>%
model(fable::ETS(Sales ~ error("A") + trend("N") + season("N")))
fc <- fit %>%
forecast(h = 42)
```
# Plot
```{r}
fc %>%
autoplot(melsyd_economy_2 %>%
slice(n()-126:0)) +
labs(title="Exponential Smoothing") +
guides(colour = "none")
```
# Métricas del modelo
```{r}
accuracy(fc, recent_production )
```
# Modelos con tendencia y estacionalidad aditiva y multiplicativa
```{r}
aus_holidays <- melsyd_economy_2 %>%
filter(Date<"2015-06-19") %>%
summarise(Sales = sum(Sales)/1e3)
fit <- aus_holidays %>%
model(
additive = ETS(Sales ~ error("A") + trend("A") +
season("A")),
multiplicative = ETS(Sales ~ error("M") + trend("A") +
season("M"))
)
fc <- fit %>% forecast(h = 42)
fc %>%
autoplot(aus_holidays %>%
slice(n()-126:0), level = NULL) +
labs(title="Sales <Estacionalidad Holts Winters> - Additive and Multiplicative") +
guides(colour = guide_legend(title = "Forecast"))
```
# Métricas del modelo
```{r}
accuracy(fc, recent_production %>%
mutate(Sales = Sales) )
```
# Efecto Multiplicativo
```{r}
sth_cross_ped <- melsyd_economy_2 %>%
summarise(Sales = sum(Sales)/1e3)
sth_cross_ped %>%
filter(Date<"2015-06-19") %>%
model(
hw = ETS(Sales ~ error("M") + trend("Ad") + season("M"))
) %>%
forecast(h = 42) %>%
autoplot(sth_cross_ped %>% slice(n()-126:0)) +
labs(title = "Estacionalidad Holts - Winters Multiplicativo")
```
# Descomposición del modelo Holts-Winters en Nivel, Tendencia, Estacionalidad
```{r}
dcmp <- melsyd_economy_2 %>%
summarise(Sales = sum(Sales)/1e3) %>%
model(
hw = ETS(Sales ~ error("M") + trend("Ad") + season("M"))
)
components(dcmp)
melsyd_economy_2 %>% autoplot(Sales)
components(dcmp) %>% autoplot()
```
# Descomposición del modelo Tendancia y Estacionalidad aditivas en Nivel, Tendencia, Estacionalidad
```{r}
dcmp <- melsyd_economy_2 %>%
summarise(Sales = sum(Sales)/1e3) %>%
model(
hw = ETS(Sales ~ error("A") + trend("Ad") + season("A"))
)
components(dcmp)
melsyd_economy_2 %>% autoplot(Sales)
components(dcmp) %>% autoplot()
```
# ARIMA
```{r}
melsyd_economy_2 %>%
mutate(diff_sales = difference(Sales)) %>%
features(diff_sales, ljung_box, lag = 10)
```
```{r}
melsyd_economy_2 %>%
summarise(Sales = sum(Sales)/1e6) %>%
transmute(
`Sales ($million)` = Sales,
`Log sales` = log(Sales),
`Annual change in log sales` = difference(log(Sales), 365),
`Doubly differenced log sales` =
difference(difference(log(Sales), 365), 1)
) %>%
pivot_longer(-Date, names_to="Type", values_to="Sales") %>%
mutate(
Type = factor(Type, levels = c(
"Sales ($million)",
"Log sales",
"Annual change in log sales",
"Doubly differenced log sales"))
) %>%
ggplot(aes(x = Date, y = Sales)) +
geom_line() +
facet_grid(vars(Type), scales = "free_y") +
labs(title = "Corticosteroid drug sales", y = NULL)
```
# Test de estacionariedad
```{r}
melsyd_economy_2 %>%
features(Sales, unitroot_kpss)
```
```{r}
melsyd_economy_2 %>%
mutate(diff_close = difference(Sales, 365)) %>%
features(diff_close, unitroot_kpss)
```
```{r}
melsyd_economy_2 %>%
mutate(diff_close = difference(Sales, 7)) %>%
features(diff_close, unitroot_kpss)
```
```{r}
melsyd_economy_2 %>%
features(Sales, unitroot_ndiffs)
```
# ARIMA con estacionalidad
# Estacionalidad Anual
```{r}
melsyd_economy_2 %>%
gg_tsdisplay(difference(Sales, 365),
plot_type='partial', lag=36) +
labs(title="Seasonally differenced", y="")
```
# Estacionalidad semanal
```{r}
melsyd_economy_2 %>%
gg_tsdisplay(difference(Sales, 7),
plot_type='partial', lag=36) +
labs(title="Seasonally differenced", y="")
```