-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
220 lines (163 loc) · 8.17 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os
import pickle
from glob import glob
import torch
from PyQt5.QtGui import QImage, QPixmap
from termcolor import colored
import numpy as np
def policies_dir():
return "policy_nets"
def rewards_dir():
return "reward_nets"
def games_dir():
return "games"
# number of episodes for policy training
def num_max_episodes():
return 10001
# numbers of episodes between each checkpoint
def get_episodes_for_checkpoint():
return 100
def conv_output_size(input_size, filter_size, padding=0, stride=1):
# formula for output dimension:
# O = (D -K +2P)/S + 1
# where:
# D = input size (height/length)
# K = filter size
# P = padding
# S = stride
return (input_size - filter_size + 2 * padding) // stride + 1
def get_input_shape():
return 3, 7, 7
def get_num_channels():
return get_input_shape()[0]
def state_filter(obs, device='auto'):
"""
:param device: device where to put the returned torch tensor
:param obs: environment observation
:return: torch 7x7x3 tensor
"""
if device == 'auto':
device = auto_device()
obs_image = obs['image'].astype(float)
#obs_image[obs_image == 6] = -1
return torch.from_numpy(obs_image).float().permute(2, 0, 1).to(device)
def print_observation(obs, flip=True):
colors = ["red", "green", "blue"]
for i, color in enumerate(colors):
obs_channel_i = obs['image'][:, :, i]
if flip:
obs_channel_i = np.flip(obs_channel_i, axis=1)
#obs_channel_i = obs_channel_i.astype(float)
#obs_channel_i[obs_channel_i == 6] = -1
print(colored(obs_channel_i, color))
def print_state(state, flip=True):
state = state.to("cpu")
colors = ["red", "green", "blue"]
for i, color in enumerate(colors):
obs_channel_i = state[i, ...]
# if flip:
# obs_channel_i = np.flip(obs_channel_i, axis=1)
print(colored(obs_channel_i, color))
def get_num_actions(env_name):
if 'Empty' in env_name or 'FourRooms' in env_name:
# print('env_name', env_name, ' ---> 3 ACTIONS')
return 3
# print('env_name', env_name, ' ---> 7 ACTIONS')
return 7
def get_all_environments():
return ["MiniGrid-Empty-5x5-v0", "MiniGrid-Empty-Random-5x5-v0", "MiniGrid-Empty-6x6-v0", "MiniGrid-Empty-Random-6x6-v0",
"MiniGrid-Empty-8x8-v0", "MiniGrid-Empty-16x16-v0", "MiniGrid-FourRooms-v0", "MiniGrid-DoorKey-5x5-v0", "MiniGrid-DoorKey-6x6-v0",
"MiniGrid-DoorKey-8x8-v0", "MiniGrid-DoorKey-16x16-v0", "MiniGrid-MultiRoom-N2-S4-v0", "MiniGrid-MultiRoom-N4-S5-v0",
"MiniGrid-MultiRoom-N6-v0", "MiniGrid-Dynamic-Obstacles-5x5-v0", "MiniGrid-Dynamic-Obstacles-Random-5x5-v0", "MiniGrid-Dynamic-Obstacles-6x6-v0",
"MiniGrid-Dynamic-Obstacles-Random-6x6-v0", "MiniGrid-Dynamic-Obstacles-8x8-v0", "MiniGrid-Dynamic-Obstacles-16x16-v0"]
# return ["MiniGrid-Empty-5x5-v0", "MiniGrid-Empty-Random-5x5-v0", "MiniGrid-Empty-6x6-v0", "MiniGrid-Empty-Random-6x6-v0",
# "MiniGrid-Empty-8x8-v0", "MiniGrid-Empty-16x16-v0", "MiniGrid-FourRooms-v0", "MiniGrid-DoorKey-5x5-v0", "MiniGrid-DoorKey-6x6-v0",
# "MiniGrid-DoorKey-8x8-v0", "MiniGrid-DoorKey-16x16-v0", "MiniGrid-MultiRoom-N2-S4-v0", "MiniGrid-MultiRoom-N4-S5-v0",
# "MiniGrid-MultiRoom-N6-v0", "MiniGrid-Fetch-5x5-N2-v0", "MiniGrid-Fetch-6x6-N2-v0", "MiniGrid-Fetch-8x8-N3-v0",
# "MiniGrid-GoToDoor-5x5-v0", "MiniGrid-GoToDoor-7x7-v0", "MiniGrid-GoToDoor-8x8-v0", "MiniGrid-PutNear-6x6-N2-v0",
# "MiniGrid-PutNear-8x8-N3-v0", "MiniGrid-RedBlueDoors-6x6-v0", "MiniGrid-RedBlueDoors-8x8-v0", "MiniGrid-MemoryS17Random-v0",
# "MiniGrid-MemoryS13Random-v0", "MiniGrid-MemoryS13-v0", "MiniGrid-MemoryS11-v0", "MiniGrid-MemoryS9-v0", "MiniGrid-MemoryS7-v0",
# "MiniGrid-LockedRoom-v0", "MiniGrid-KeyCorridorS3R1-v0", "MiniGrid-KeyCorridorS3R2-v0", "MiniGrid-KeyCorridorS3R3-v0",
# "MiniGrid-KeyCorridorS4R3-v0", "MiniGrid-KeyCorridorS5R3-v0", "MiniGrid-KeyCorridorS6R3-v0", "MiniGrid-Unlock-v0",
# "MiniGrid-UnlockPickup-v0", "MiniGrid-BlockedUnlockPickup-v0", "MiniGrid-ObstructedMaze-1Dl-v0", "MiniGrid-ObstructedMaze-1Dlh-v0",
# "MiniGrid-ObstructedMaze-1Dlhb-v0", "MiniGrid-ObstructedMaze-2Dl-v0", "MiniGrid-ObstructedMaze-2Dlh-v0", "MiniGrid-ObstructedMaze-2Dlhb-v0",
# "MiniGrid-ObstructedMaze-1Q-v0", "MiniGrid-ObstructedMaze-2Q-v0", "MiniGrid-ObstructedMaze-Full-v0", "MiniGrid-DistShift1-v0",
# "MiniGrid-DistShift2-v0", "MiniGrid-LavaGapS5-v0", "MiniGrid-LavaGapS6-v0", "MiniGrid-LavaGapS7-v0", "MiniGrid-LavaCrossingS9N1-v0",
# "MiniGrid-LavaCrossingS9N2-v0", "MiniGrid-LavaCrossingS9N3-v0", "MiniGrid-LavaCrossingS11N5-v0", "MiniGrid-SimpleCrossingS9N1-v0",
# "MiniGrid-SimpleCrossingS9N2-v0", "MiniGrid-SimpleCrossingS9N3-v0", "MiniGrid-SimpleCrossingS11N5-v0", "MiniGrid-Dynamic-Obstacles-5x5-v0",
# "MiniGrid-Dynamic-Obstacles-Random-5x5-v0", "MiniGrid-Dynamic-Obstacles-6x6-v0", "MiniGrid-Dynamic-Obstacles-Random-6x6-v0",
# "MiniGrid-Dynamic-Obstacles-8x8-v0", "MiniGrid-Dynamic-Obstacles-16x16-v0"]
def auto_device():
return "cuda" if torch.cuda.is_available() else "cpu"
def load_net(arg, eval_mode=False, device='auto'):
if arg is None:
return None
if device == 'auto':
device = auto_device()
if arg.endswith(".pth"):
# select specified weights
checkpoint_to_load_weights = int(arg.rsplit("-", 1)[1].split(".", 1)[0])
net_dir = os.path.dirname(arg)
net = pickle.load(open(os.path.join(net_dir, "net.pkl"), "rb")).to(device)
net.load_checkpoint(checkpoint_to_load_weights)
else:
# load the most recent weights from the specified folder
net_dir = arg
# net_dir = os.path.dirname(arg)
net = pickle.load(open(os.path.join(net_dir, "net.pkl"), "rb")).to(device)
net.load_last_checkpoint()
if eval_mode:
net.eval()
return net
def nparray_to_qpixmap(img):
return QPixmap(QImage(img, img.shape[1], img.shape[0], img.shape[1] * 3, QImage.Format_RGB888))
def normalize(values, inf=-1, sup=1):
assert inf < sup
mn = min(values)
mx = max(values)
ampl = (mx - mn + 10 ** -7)
return [(v-mn)/ampl * (sup-inf) + inf for v in values]
def standardize(values):
mean = np.mean(values)
std = np.std(values) + 10 ** -7
return [(v-mean)/std for v in values]
def standardize_with_memory(values, mem=0.9):
running_avg = sum(values)/len(values)
running_std = np.std(values)
yield standardize(values)
while True:
running_avg = mem * running_avg + (1-mem) * sum(values)/len(values)
running_std = mem * running_std + (1-mem) * np.std(values) + 10 ** -7
yield [(v-running_avg)/running_std for v in values]
def rounded_list(iterator, digits=2):
new_list = []
for element in iterator:
new_list.append(round(element, digits))
return new_list
class Standardizer:
def __init__(self, mem):
self.mem = mem
self.running_avg = None
self.running_std = None
def standardize(self, values):
if self.running_avg is None:
self.running_avg = np.mean(values)
self.running_std = np.std(values) + 10 ** -7
return [(v-self.running_avg)/self.running_std for v in values]
self.running_avg = self.mem * self.running_avg + (1-self.mem) * sum(values)/len(values)
self.running_std = self.mem * self.running_std + (1-self.mem) * np.std(values) + 10 ** -7
return [(v-self.running_avg)/self.running_std for v in values]
class SumStandardizer:
def __init__(self, history_length):
self.history_length = history_length
self.history = []
def standardize(self, values):
if len(self.history) == 0: # first time: initialize
self.history.append(sum(values))
return values
if len(self.history) == self.history_length: # if history is full: remove the oldest
self.history.pop(0)
self.history.append(sum(values))
avg = np.mean(self.history)
std = np.std(self.history) + 0.1
return [(v-(avg/len(values)))/std for v in values]