Name
高频跨期套利策略
Author
巴啦啦小魔仙
Strategy Description
交易标的:比特币(BTC)
价差数据:BTC 永续 - BTC 季度(省略协整性检验)
交易周期:1 分钟
头寸匹配:1:1
交易类型:同品种跨期
做多价差开仓条件:如果当前账户没有持仓,并且价差 < (长期价差水平 - 阈值),就做多价差。即:买开 BTC 永续,卖开 BTC 季度。
做空价差开仓条件:如果当前账户没有持仓,并且价差 > (长期价差水平 + 阈值),就做空价差。即:卖开 BTC 永续,买开 BTC 季度。
做多价差平仓条件:如果当前账户持有 BTC 永续多单,并且持有 BTC 季度空单,并且价差 > 长期价差水平,就平多价差。即:卖平 BTC 永续,买平 BTC 季度。
做空价差平仓条件:如果当前账户持有 BTC 永续空单,并且持有 BTC 季度多单,并且价差 < 长期价差水平,就平空价差。即:买平 BTC 永续,卖平 BTC 季度。
举个例子,假设 BTC 永续 和 BTC 当季的价差长期维持在 35 左右。如果某一天价差达到 50 ,我们预计价差会在未来某段时间回归到 35 及以下。那么就可以卖出 BTC 永续,同时买入 BTC 当季,来做空这个价差。反之亦然,注意 BTC 永续 和 BTC 当季 的价差总会回归到0附近(到期交割),所以价差为正的时候,优先做空价差,价差为负的时候,优先做多价差。
👉 如果你对该策略有兴趣,请+V:Irene11229 (点击我的主页,我将会持续更新更多策略,同时还可获得几大头部交易所的市场分析数据)
Source (python)
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import json
import time
from kumex.client import Trade, Market
class Hf(object):
def __init__(self):
# read configuration from json file
with open('config.json', 'r') as file:
config = json.load(file)
self.api_key = config['api_key']
self.api_secret = config['api_secret']
self.api_passphrase = config['api_passphrase']
self.sandbox = config['is_sandbox']
self.symbol_a = config['symbol_a']
self.symbol_b = config['symbol_b']
self.spread_mean = float(config['spread_mean'])
self.leverage = float(config['leverage'])
self.size = int(config['size'])
self.num_param = float(config['num_param'])
self.trade = Trade(self.api_key, self.api_secret, self.api_passphrase, is_sandbox=self.sandbox)
self.market = Market(self.api_key, self.api_secret, self.api_passphrase, is_sandbox=self.sandbox)
def get_symbol_price(self, symbol):
ticker = self.market.get_ticker(symbol)
return float(ticker['price'])
if __name__ == '__main__':
hf = Hf()
while 1:
# ticker of symbols
price_af = hf.get_symbol_price(hf.symbol_a)
price_bf = hf.get_symbol_price(hf.symbol_b)
# position of symbols
position_a = hf.trade.get_position_details(hf.symbol_a)
position_a_qty = int(position_a['currentQty'])
position_b = hf.trade.get_position_details(hf.symbol_b)
position_b_qty = int(position_b['currentQty'])
# interval of price
new_spread = price_af - price_bf
print('new_spread =', new_spread)
if position_a_qty == position_b_qty == 0 and new_spread < (hf.spread_mean - hf.num_param):
buy_order = hf.trade.create_limit_order(hf.symbol_a, 'buy', hf.leverage, hf.size, price_af + 1)
print('buy %s,order id =%s' % (hf.symbol_a, buy_order['orderId']))
sell_order = hf.trade.create_limit_order(hf.symbol_b, 'sell', hf.leverage, hf.size, price_bf - 1)
print('sell %s,order id =%s' % (hf.symbol_b, sell_order['orderId']))
elif position_a_qty == position_b_qty == 0 and new_spread > (hf.spread_mean + hf.num_param):
buy_order = hf.trade.create_limit_order(hf.symbol_a, 'sell', hf.leverage, hf.size, price_af - 1)
print('sell %s,order id =%s' % (hf.symbol_a, buy_order['orderId']))
sell_order = hf.trade.create_limit_order(hf.symbol_b, 'buy', hf.leverage, hf.size, price_bf + 1)
print('buy %s,order id =%s' % (hf.symbol_b, sell_order['orderId']))
elif position_a_qty > 0 and position_b_qty < 0 and new_spread > hf.spread_mean:
buy_order = hf.trade.create_limit_order(hf.symbol_a, 'sell', position_a['realLeverage'],
position_a_qty, price_af + 1)
print('sell %s,order id =%s' % (hf.symbol_a, buy_order['orderId']))
sell_order = hf.trade.create_limit_order(hf.symbol_b, 'buy', position_a['realLeverage'],
position_a_qty, price_bf - 1)
print('buy %s,order id =%s' % (hf.symbol_b, sell_order['orderId']))
elif position_a_qty < 0 and position_b_qty > 0 and new_spread < hf.spread_mean:
buy_order = hf.trade.create_limit_order(hf.symbol_a, 'buy', position_a['realLeverage'],
position_a_qty, price_af - 1)
print('buy %s,order id =%s' % (hf.symbol_a, buy_order['orderId']))
sell_order = hf.trade.create_limit_order(hf.symbol_b, 'sell', position_a['realLeverage'],
position_a_qty, price_bf + 1)
print('sell %s,order id =%s' % (hf.symbol_b, sell_order['orderId']))
time.sleep(60)
Detail
https://www.fmz.com/strategy/207009
Last Modified
2021-03-04 10:13:06