From 2584484730b1bd8279d54a1bd5b52ae33021bb92 Mon Sep 17 00:00:00 2001 From: Philipp Schlegel Date: Wed, 17 Nov 2021 11:24:34 +0000 Subject: [PATCH] teach mesh_neuron to mesh multiple bodies at a time --- dvid/fetch.py | 59 +++++++++++++++++++++++++++++++++++++++++++++------ 1 file changed, 53 insertions(+), 6 deletions(-) diff --git a/dvid/fetch.py b/dvid/fetch.py index 2536da8..4c873be 100644 --- a/dvid/fetch.py +++ b/dvid/fetch.py @@ -13,11 +13,11 @@ import numpy as np import pandas as pd -from concurrent.futures import ThreadPoolExecutor, as_completed -from functools import lru_cache +from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor, as_completed +from functools import lru_cache, partial from requests.exceptions import HTTPError from scipy.spatial.distance import cdist -from tqdm import tqdm +from tqdm.auto import tqdm from . import decode, meshing, utils, config @@ -1575,15 +1575,17 @@ def mesh_neuron(bodyid, scale='COARSE', step_size=1, bbox=None, + parallel=False, + progress=True, server=None, node=None, **kwargs): - """Create mesh for given neuron. + """Create mesh for given neuron(s). Parameters ---------- - bodyid : int | str - ID of body for which to generate mesh. + bodyid : int | str | list-like + Body ID(s) for which to generate mesh. scale : int | "COARSE", optional Resolution of sparse volume starting with 0 where each level beyond 0 has 1/2 resolution of previous level. "COARSE" will @@ -1594,6 +1596,13 @@ def mesh_neuron(bodyid, bbox : list | None, optional Bounding box to which to restrict the meshing to. Format: ``[x_min, x_max, y_min, y_max, z_min, z_max]``. + parallel : bool | int + Whether to run meshing in parallel on multiple cores if + `bodyid` is more than one neuron. If `parallel` is integer will + use that many cores. Otherwise defaults to half the available + cores. + progress : bool + Whether to show a progress bar when meshing multiple neurons. server : str, optional If not provided, will try reading from global. node : str, optional @@ -1615,6 +1624,41 @@ def mesh_neuron(bodyid, """ server, node, user = eval_param(server, node) + if isinstance(bodyid, (list, tuple, np.ndarray)): + if len(bodyid) == 1: + bodyid = bodyid[0] + else: + func = partial(mesh_neuron, + scale=scale, + step_size=step_size, + bbox=bbox, + server=server, + node=node, + **kwargs) + + if not parallel: + return [func(b) for b in tqdm(bodyid, + desc='Meshing', + disable=not progress, + leave=False)] + else: + meshes = [] + n_cores = parallel if isinstance(parallel, int) else max(1, int(os.n_cores() // 2)) + with ProcessPoolExecutor(max_workers=n_cores) as executor: + futures = {} + for bid in bodyid: + f = executor.submit(func, bid) + futures[f] = bid + + with tqdm(desc='Meshing', + total=len(bodyid), + leave=False, + disable=not progress) as pbar: + for f in as_completed(futures): + meshes.append(f.result()) + pbar.update(1) + return meshes + bodyid = utils.parse_bid(bodyid) voxels = get_sparsevol(bodyid, @@ -1641,6 +1685,9 @@ def mesh_neuron(bodyid, step_size=step_size, **defaults) + # Track the ID just in case + mesh.id = bodyid + return mesh