-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
28 lines (22 loc) · 1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import warnings
import numpy as np
np.random.seed(0)
warnings.filterwarnings('ignore')
from analysis_scripts.questionnaires.run import run_questionnaires_analysis
from analysis_scripts.cognitive_battery.run import run_hierarchical_bayesian_models, run_aggregate_score, \
run_dimensionality_reduction_models
from analysis_scripts.lgcm.run import run_lgcm_analysis
from analysis_scripts.intra_evaluation.run import run_intra_evals
from analysis_scripts.utils import Chrono
def run_all(studies):
chrono = Chrono()
# run_intra_evals(studies, metric_type="F1")
run_hierarchical_bayesian_models(studies, pre_process=False, fit_models=False, get_plot=True, get_latex=False)
# run_aggregate_score(studies)
# run_dimensionality_reduction_models(studies)
# run_questionnaires_analysis(studies)
print(f"Time taken to run the script: {chrono.get_elapsed_time()} seconds")
if __name__ == '__main__':
studies = ['v3_prolific', 'v3_utl']
# run_lgcm_analysis(study="v3_utl")
run_all(studies)