forked from dhl123/Airtag-2023
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_onesvm_Sdatasets.py
194 lines (188 loc) · 5.6 KB
/
evaluate_onesvm_Sdatasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score
import numpy as np
import json
from sklearn.metrics import precision_score, recall_score, f1_score
data=[]
from sklearn import metrics
import time
suffix=""#objects/
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('-flag', action='store', default=None, dest='flag')
parser.add_argument('-nu', action='store', default=None, dest='nu')
parser.add_argument('-gama', action='store', default=None, dest='gama')
parser.add_argument('-gpu', action='store', default=None, dest='gpu')
args = parser.parse_args()
flag=int(args.flag)
nu_=float(args.nu)
gama_=float(args.gama)
path=['training_preprocessed_logs_S1-CVE-2015-5122_windows','training_preprocessed_logs_S2-CVE-2015-3105_windows','testing_preprocessed_logs_S3-CVE-2017-11882_windows','training_preprocessed_logs_S4-CVE-2017-0199_windows_py']
f=open("./embedding_data/"+suffix+"S"+str(flag)+"_benign.json")
number_list=['S1_number_.npy','S2_number_.npy','S3_number_.npy','S4_number_.npy']
import os
os.environ["CUDA_VISIBLE_DEVICES"] =str(args.gpu)
strr=f.read().split("\n")
f.close()
print("start-------")
for i in range(len(strr)-1):
if i%5000==0:
print(i)
strr[i]=strr[i].split('"values"')[1:]
for j in range(len(strr[i])-1):
strr[i][j]=strr[i][j][3:].split("]}]}, {")[0].split(",")
strr[i][-1]=strr[i][-1][3:].split("]}]}]}")[0].split(",")
strr[i]= np.array(strr[i]).astype(np.float)
strr[i]=np.array(strr[i][0]) #cls
value=np.array(strr[:-1])
print(value.shape)
print("start clustering---------")
from thundersvm import OneClassSVM
clf = OneClassSVM(nu=nu_, kernel="rbf",gamma=gama_)#0.08 original, 0.1 for S4 case test
clf.fit(value)
predict_result = clf.predict(value)
m = 0
import collections
def second_class(strr_original, labels,threshold,flag_id):
benign=[]
malicious=[]
f11=open(strr_original,'r')
whole_words={}
strr_original=f11.read().split("\n")
for i in range(len(labels)):
if labels[i]==1:
benign.append(i)
if labels[i]==-1:
malicious.append(i)
frequent_list={}
for i in range(len(strr_original)):
ind=i
i=strr_original[i].split(",")[4:]
for j in range(len(i)):
if j not in frequent_list.keys():
frequent_list[j]={}
if i[j]=='':
continue
else:
if i[j] not in frequent_list[j].keys():
frequent_list[j][i[j]]=0
if i[j] not in whole_words.keys():
whole_words[i[j]]=0
frequent_list[j][i[j]]=frequent_list[j][i[j]]+1
whole_words[i[j]]=whole_words[i[j]]+1
for i in range(len(frequent_list.keys())):
frequent_list[i]=sorted(frequent_list[i].items(), key=lambda x: x[1], reverse=True)
frequent_list[i]=frequent_list[i][:int(threshold*len(frequent_list[i]))]
tmp_keys=[]
for j in frequent_list[i]:
tmp_keys.append(j[0])
frequent_list[i]=tmp_keys
for i in malicious:
strr_tmp=strr_original[i].split(",")[4:]
flag=False
for j in range(len(strr_tmp)):
if strr_tmp[j]=='':
continue
if strr_tmp[j] not in frequent_list[j] and whole_words[strr_tmp[j]]>8:
flag=True
if flag is False:
labels[i]=1
return labels
fpresults=[]
benign_benign=[]
for num_1 in range(len(predict_result)):
if predict_result[num_1] == 1:
m += 1
benign_benign.append(str(num_1))
else:
fpresults.append(str(num_1))
acc = m / len(predict_result)
print("benign accuracy")
print(acc)
f=open("./embedding_data/"+suffix+"S"+str(flag)+"_test.json",'r')
strr=f.read().split("\n")
f.close()
for i in range(len(strr)-1):
strr[i]=strr[i].split('"values"')[1:]
for j in range(len(strr[i])-1):
strr[i][j]=strr[i][j][3:].split("]}]}, {")[0].split(",")
strr[i][-1]=strr[i][-1][3:].split("]}]}]}")[0].split(",")
strr[i]= np.array(strr[i]).astype(np.float)
strr[i]=np.array(strr[i][0]) #cls
value2=np.array(strr[:-1])
test1_time=time.time()
import numpy as np
strr=np.load('./ground_truth/'+number_list[flag-1])
labels=np.ones(len(value2))
for i in range(len(strr)):
if int(strr[i])<=len(value2):
labels[int(strr[i])]=-1
predict_labels = clf.predict(value2)
a1=0
a2=0
a3=0
a4=0
benign_benign=[]
fpresults=[]
benign_malicious=[]
for i in range(len(predict_labels)):
if labels[i]==-1 and predict_labels[i]==-1:
a1=a1+1
if labels[i]==-1 and predict_labels[i]==1:
a2=a2+1
if labels[i]==1 and predict_labels[i]==-1:
a3=a3+1
if labels[i]==1 and predict_labels[i]==1:
a4=a4+1
print('test1')
#np.save("S"+str(flag)+"_number_benign_test.npy",benign_benign)
current_time=time.time()-test1_time
#print(current_time)
print(a1)
print(a2)
print(a3)
print(a4)
print(a1/(a1+a2))
print(a4/(a4+a3))
print(a3/(a4+a3))
print(a2/(a2+a1))
a_labels=predict_labels.copy()
for j in range(1,11):
threshold=0.3
predict_labels=second_class('./training_data/'+path[flag-1],a_labels,threshold,flag)
a1=0
a2=0
a3=0
a4=0
result_array=[]
fpresults=[]
benign_benign=[]
logs_f=open('./training_data/'+path[flag-1],'r')
logs=logs_f.read().split("\n")
logs_f.close()
logs_classify=[]
for i in range(len(predict_labels)):
if labels[i]==-1 and predict_labels[i]==-1:
a1=a1+1
if labels[i]==-1 and predict_labels[i]==1:
a2=a2+1
if labels[i]==1 and predict_labels[i]==-1:
a3=a3+1
if labels[i]==1 and predict_labels[i]==1:
a4=a4+1
print('test1')
print(threshold)
#print(time.time()-current_time)
current_time=time.time()
print(a1)
print(a2)
print(a3)
print(a4)
print("TPR")
print(a1/(a1+a2))
print(a4/(a4+a3))
print("FPR")
print(a3/(a4+a3))
print(a2/(a2+a1))
exit()