-
Notifications
You must be signed in to change notification settings - Fork 0
/
linearReg.py
87 lines (66 loc) · 2.15 KB
/
linearReg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
#linear regression for bitcoin data
import pandas as pd
import math, datetime
import quandl
quandl.ApiConfig.api_key = 'k8iEkzNWzshXtctSAsjy'
import numpy as np
from sklearn import preprocessing, cross_validation, svm
import matplotlib.pyplot as plt
from matplotlib import style
import time
style.use('ggplot')
from sklearn.linear_model import LinearRegression
df = quandl.get('BCHARTS/BTCCUSD')
#df = quandl.get('WIKI/GOOGL')
df['HL_PCT'] = ((df['High'] - df['Low'])/df['High'])*100
df['PCT_CHANGE'] = ((df['Open'] - df['Close'])/df['Open'])*100
df = df[['Close','HL_PCT','PCT_CHANGE','Volume (BTC)']]
forecast_col = 'Close'
df.fillna(-99999, inplace=True) #reaplce NAN data. if there is Lacking data
#this will be treated as outlier data
forecast_out = int(math.ceil(0.2*len(df))) #integer value
#forecast_out = (math.ceil(0.1*len(df)))
print(forecast_out)
df['label'] = df[forecast_col].shift(-forecast_out)
#df.dropna(inplace=True)
print(df.head())
X = np.array(df.drop(['label'],1))
#print(X)
X = preprocessing.scale(X)
#print(X)
X = X[:-forecast_out]
#print(X)
X_laltely = X[-forecast_out:]
#print(X_laltely)
df.dropna(inplace=True)
y = np.array(df['label'])
X_train, X_test, y_train, y_test = cross_validation.train_test_split(X,y,test_size = 0.1)
#shuffles them up and output the required data
# clf = svm.SVR(kernel='poly') #support vector regression
clf = LinearRegression()
clf.fit(X_train, y_train)
accuracy = clf.score(X_test, y_test)
forecast_set = clf.predict(X_laltely)
#scikitlearn comes here :)
print(forecast_set)
df['Forecast'] = np.NAN
last_date = df.iloc[-1].name
last_unix = time.mktime(last_date.timetuple())
one_day = 86400
next_unix = last_unix + one_day
for i in forecast_set:
print(i)
next_date = datetime.datetime.fromtimestamp(next_unix)
next_unix += one_day
df.loc[next_date] = [np.nan for _ in range(len(df.columns)-1)] + [i]
#.loc referes the index to the data frame
print(df)
# df['Close'].plot()
# df['Forecast'].plot()
# plt.legend(loc=4)
# plt.xlabel('Date')
# plt.ylabel('Price')
# plt.show()
#define features that are meaningful to our cause :P
#features are attributes that make up the label
#and label is some prediction into the future