-
Notifications
You must be signed in to change notification settings - Fork 0
/
firstdeepnet.py
195 lines (131 loc) · 6.15 KB
/
firstdeepnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot = True)
n_nodes_hl1 = 500
n_nodes_hl2 = 1000
n_nodes_hl3 =1500
n_classes = 10
batch_size = 100
x = tf.placeholder('float', [None, 784])
y = tf.placeholder('float')
def neural_network_model(data):
hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784, n_nodes_hl1])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))}
hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))}
hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))}
output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
'biases':tf.Variable(tf.random_normal([n_classes])),}
l1 = tf.add(tf.matmul(data,hidden_1_layer['weights']), hidden_1_layer['biases'])
l1 = tf.nn.relu(l1)
l2 = tf.add(tf.matmul(l1,hidden_2_layer['weights']), hidden_2_layer['biases'])
l2 = tf.nn.relu(l2)
l3 = tf.add(tf.matmul(l2,hidden_3_layer['weights']), hidden_3_layer['biases'])
l3 = tf.nn.relu(l3)
output = tf.matmul(l3,output_layer['weights']) + output_layer['biases']
print(hidden_1_layer)
return output
def train_neural_network(x):
prediction = neural_network_model(x)
# OLD VERSION:
#cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(prediction,y) )
# NEW:
cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) )
optimizer = tf.train.AdamOptimizer().minimize(cost)
hm_epochs = 2
with tf.Session() as sess:
# OLD:
#sess.run(tf.initialize_all_variables())
# NEW:
sess.run(tf.global_variables_initializer())
for epoch in range(hm_epochs):
epoch_loss = 0
for _ in range(int(mnist.train.num_examples/batch_size)):
epoch_x, epoch_y = mnist.train.next_batch(batch_size)
_, c = sess.run([optimizer, cost], feed_dict={x: epoch_x, y: epoch_y})
epoch_loss += c
print('Epoch', epoch, 'completed out of',hm_epochs,'loss:',epoch_loss)
correct = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1))
accuracy = tf.reduce_mean(tf.cast(correct, 'float'))
print('Accuracy:',accuracy.eval({x:mnist.test.images, y:mnist.test.labels}))
train_neural_network(x)
# import tensorflow as tf
# import time as mytime
# from tensorflow.examples.tutorials.mnist import input_data
# mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
# n_nodes_hl1 = 250
# n_nodes_hl2 = 80
# n_nodes_hl3 = 30
# n_classes = 10
# batch_size = 100
# #height X width
# x = tf.placeholder('float',[None, 784])
# y = tf.placeholder('float')
# def neural_network_model(data):
# hidden_1_layer = {'weights':tf.Variable(tf.random_normal([784, n_nodes_hl1])),
# 'biases':tf.Variable(tf.random_normal(n_nodes_hl1))}
# # tensor flow variable
# # input data is mul by weights then summed, bias adds to that
# # (input data * weights) + biases (model for each layer)
# hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])),
# 'biases':tf.Variable(tf.random_normal(n_nodes_hl2))}
# hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])),
# 'biases':tf.Variable(tf.random_normal(n_nodes_hl3))}
# output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])),
# 'biases':tf.Variable(tf.random_normal([n_classes]))}
# l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']) , hidden_1_layer['biases'])
# l1 = tf.nn.relu(l1)
# #rectified linear - activation/threshold fucntion
# l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']) , hidden_2_layer['biases'])
# l2 = tf.nn.relu(l2)
# l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']) , hidden_3_layer['biases'])
# l3 = tf.nn.relu(l3)
# output = tf.matmul(l3, output_layer['weights']) , output_layer['biases']
# return output
# #model is coded, not we need to tell tensor flow what to do
# #how we want to run data through that model in the session
# # output shape will be of traning and testing set labes
# # learning rate for adamoptimizer can be modified
# def train_neural_network(x):
# prediction = neural_network_model(x)
# cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = prediction, labels= y))
# optimizer = tf.train.AdamOptimizer().minimize(cost)
# start = mytime.time()
# n_epochs = 2
# #cycles feed forward and back propagation
# with tf.Session() as sess:
# sess.run(tf.initialize_all_variables())
# for epoch in n_epochs:
# epoch_loss = 0
# for _ in range(int(mnist.train.num_examples/batch_size)):
# x, y = mnist.train.next_batch(batch_size)
# _,c = sess.run([optimizer, cost], feed_dict = {x: x, y: y})
# epoch_loss += c
# print('Epoch', epoch, 'completed out of ', n_epochs, 'loss:', epoch_loss)
# print(mytime.time() - start)
# correct = tf.equal(tf.argmax(prediction,1), tf.argmax(y,1))
# accuracy = tf.reduce_mean(tf.cast(correct,'float'))
# print ('accuracy', accuracy.eval({x:mnist.test.images, y:mnist.test.labes}))
# train_neural_network(x)
# #60k traning samples of digits written by hand
# #10k testing samples
# #amnest 28*28 images
# #each feature is a 0/1 - is it part of the number or not. NN will model
# #this relationship
# '''
# input > weight > HL1 (activation fxn) > weights > HL2 (activation fxn)
# > weights > output layer
# compare output to intened output > cost fxn (cross entropy, how
# close or not close we are to the inteded target)
# optimization fucntion (optimizer) > minimize cost (AdamOptimizer, SGD, AdaGrad)
# does backpropagation
# feed forward + backprop = is one epoch (10-20 times epoch is done)
# each time lowering the cost fucntion, cost high to low then saturates (may be)
# '''
# '''
# one_hot = one componenet is on rest are off
# 0 = [1,0,0,0,0,0,0,0,0,0]
# 1 = [0,1,0,0,0,0,0,0,0,0]
# 2 = and so on
# '''