forked from YafeiXu/xyfQuantlet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMARpdfclaytongumbeljoe.r
142 lines (109 loc) · 3.37 KB
/
MARpdfclaytongumbeljoe.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# MARpdfclaytongumbeljoe
#--------------------------- MARclaytonpdf
library(copula)
library(rgl)
M=10000 # number of Monte Carlo simulation
rho=.7 # single parameter in correlation matrix of the 3-dimensional Gaussian copula
d=2 # dimension of the Gaussian copula
theta2Input=0.7 # Kendall's tau
clayton.cop <- claytonCopula(iTau(claytonCopula(), theta2Input), dim = d)
U <- rCopula(M, clayton.cop )
u1=U[,1]
u2=U[,2]
ng=33 # number of grid
x=seq(0,1,length.out=ng) # grid elements
y=seq(0,1,length.out=ng)
### function for usage in outer function
fhat=function(x,y){
u=cbind(x,y)
v=numeric()
v=dCopula(u, clayton.cop, log=FALSE)
return(v)
}
### use outer function
outer931=outer(x,y,fhat)
### 3d PDF plot
open3d()
persp3d(x,y, outer931,
theta =35, phi = 35,
col="blue",
xlab = "u1", ylab = "u2", zlab = "c(u1, u2)",front="fill",back="line",alpha=0.9,
ticktype = "detailed",aspect=c(1,1,1.3))
box3d()# add a framework
### scatter plot and contour
plot(u1,u2, xlab="u1", ylab="u2", pch=19, cex=.1,col="white")
contour(outer931, drawlabels=T, nlevels=33, col=2, add=TRUE,cex=10)
### scatter plot and contour
plot(u1,u2, xlab="u1", ylab="u2", pch=19, cex=.1,col=1)
#--------------------------- MARgumbelpdf
library(copula)
library(rgl)
M=10000 # number of Monte Carlo simulation
rho=.7 # single parameter in correlation matrix of the 3-dimensional Gaussian copula
d=2 # dimension of the Gaussian copula
theta2Input=0.7 # Kendall's tau
gumbel.cop <- gumbelCopula(iTau(gumbelCopula(), theta2Input), dim = d)
U <- rCopula(M, gumbel.cop )
u1=U[,1]
u2=U[,2]
ng=33 # number of grid
x=seq(0,1,length.out=ng) # grid elements
y=seq(0,1,length.out=ng)
### function for usage in outer function
fhat=function(x,y){
u=cbind(x,y)
v=numeric()
v=dCopula(u, gumbel.cop, log=FALSE)
return(v)
}
### use outer function
outer931=outer(x,y,fhat)
### 3d PDF plot
open3d()
persp3d(x,y, outer931,
theta =35, phi = 35,
col="blue",
xlab = "u1", ylab = "u2", zlab = "c(u1, u2)",front="fill",back="line",alpha=0.9,
ticktype = "detailed",aspect=c(1,1,1.3))
box3d()# add a framework
### scatter plot and contour
plot(u1,u2, xlab="u1", ylab="u2", pch=19, cex=.1,col="white")
contour(outer931, drawlabels=T, nlevels=33, col=2, add=TRUE,cex=10)
### scatter plot and contour
plot(u1,u2, xlab="u1", ylab="u2", pch=19, cex=.1,col=1)
#--------------------------- MARjoepdf
library(copula)
library(rgl)
M=10000 # number of Monte Carlo simulation
rho=.7 # single parameter in correlation matrix of the 3-dimensional Gaussian copula
d=2 # dimension of the Gaussian copula
theta2Input=0.7 # Kendall's tau
joe.cop <- joeCopula(iTau(joeCopula(), theta2Input), dim = d)
U <- rCopula(M, clayton.cop )
u1=U[,1]
u2=U[,2]
ng=33 # number of grid
x=seq(0,1,length.out=ng) # grid elements
y=seq(0,1,length.out=ng)
### function for usage in outer function
fhat=function(x,y){
u=cbind(x,y)
v=numeric()
v=dCopula(u, joe.cop, log=FALSE)
return(v)
}
### use outer function
outer931=outer(x,y,fhat)
### 3d PDF plot
open3d()
persp3d(x,y, outer931,
theta =35, phi = 35,
col="blue",
xlab = "u1", ylab = "u2", zlab = "c(u1, u2)",front="fill",back="line",alpha=0.9,
ticktype = "detailed",aspect=c(1,1,1.3))
box3d()# add a framework
### scatter plot and contour
plot(u1,u2, xlab="u1", ylab="u2", pch=19, cex=.1,col="white")
contour(outer931, drawlabels=T, nlevels=33, col=2, add=TRUE,cex=10)
### scatter plot and contour
plot(u1,u2, xlab="u1", ylab="u2", pch=19, cex=.1,col=1)