forked from stack-of-tasks/pinocchio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmultiprecision.cpp
56 lines (40 loc) · 2.25 KB
/
multiprecision.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#include "pinocchio/math/multiprecision.hpp"
#include "pinocchio/parsers/urdf.hpp"
#include "pinocchio/algorithm/joint-configuration.hpp"
#include "pinocchio/algorithm/rnea.hpp"
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <iostream>
// PINOCCHIO_MODEL_DIR is defined by the CMake but you can define your own directory here.
#ifndef PINOCCHIO_MODEL_DIR
#define PINOCCHIO_MODEL_DIR "path_to_the_model_dir"
#endif
int main(int argc, char ** argv)
{
using namespace pinocchio;
// You should change here to set up your own URDF file or just pass it as an argument of this example.
const std::string urdf_filename = (argc<=1) ? PINOCCHIO_MODEL_DIR + std::string("/example-robot-data/robots/ur_description/urdf/ur5_robot.urdf") : argv[1];
// Load the URDF model
Model model;
pinocchio::urdf::buildModel(urdf_filename,model);
// Build a data related to model
Data data(model);
// Define Model and Data for multiprecision types
typedef boost::multiprecision::cpp_dec_float_100 float_100;
typedef ModelTpl<float_100> ModelMulti;
typedef DataTpl<float_100> DataMulti;
ModelMulti model_multi = model.cast<float_100>();
DataMulti data_multi(model_multi);
// Sample a random joint configuration as well as random joint velocity and acceleration
ModelMulti::ConfigVectorType q_multi = randomConfiguration(model_multi);
ModelMulti::TangentVectorType v_multi = ModelMulti::TangentVectorType::Random(model.nv);
ModelMulti::TangentVectorType a_multi = ModelMulti::TangentVectorType::Random(model.nv);
Model::ConfigVectorType q = q_multi.cast<double>();
Model::TangentVectorType v = v_multi.cast<double>();
Model::TangentVectorType a = a_multi.cast<double>();
// Computes the inverse dynamics (aka RNEA)
rnea(model, data, q, v, a);
rnea(model_multi , data_multi , q_multi , v_multi , a_multi);
// Get access to the joint torque with standard or multiprecision arithmetic and print sufficient decimals for both precisions
std::cout << "Joint torque standard arithmetic:\n" << std::setprecision(std::numeric_limits<float_100>::max_digits10) << data.tau << std::endl;
std::cout << "Joint torque multiprecision arithmetic:\n" << std::setprecision(std::numeric_limits<float_100>::max_digits10) << data_multi.tau << std::endl;
}