-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathclustering.py
120 lines (86 loc) · 4.04 KB
/
clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
"""
====================================
Toy Sample for clustering techniques
====================================
Based on Phil Roth <[email protected]> Clustering sample
This programs check differences between kmeans clustering and dbscan.
KMeans: requires the number of clusters. So, you can try different options and check some measurement of "good clustering"
DBScan: does not requires the number of cluster, but instead it needs the eps, the radius, and the minimun number of elements.
"""
print(__doc__)
import numpy as np
from sklearn.cluster import DBSCAN
from sklearn.cluster import KMeans
from sklearn import metrics
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
def plotclusters(labels):
# #############################################################################
# Plot result
# Black removed and is used for noise instead.
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = X[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=14)
xy = X[class_member_mask & ~core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
markeredgecolor='k', markersize=6)
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.show()
# #############################################################################
# Generate random sample data, three clusters.
centers = [[1, 1], [-1, -1], [1, -1]]
X, labels_true = make_blobs(n_samples=750, centers=centers, cluster_std=0.4,
random_state=0)
# Add extra samples
#X2, labels_true2 = make_blobs( n_samples=30, centers=[[-1,1]],cluster_std=0.4,random_state=0)
#X = np.concatenate((X,X2))
#labels_true = np.concatenate((labels_true, labels_true2))
# ZScoring....
X = StandardScaler().fit_transform(X)
# #############################################################################
# Compute DBSCAN
db = DBSCAN(eps=0.3, min_samples=10).fit(X)
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.core_sample_indices_] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
# Count the number of labels assigned to -1 which is no cluster, hence noise.
n_noise_ = list(labels).count(-1)
# #############################################################################
# Compute Kmeans
lblsk2 = KMeans(n_clusters=2).fit_predict(X)
print("KMeans 2 clusters: Silhouette Coefficient (-1,1): %0.3f"
% metrics.silhouette_score(X, lblsk2))
plotclusters(lblsk2)
lblsk3 = KMeans(n_clusters=3).fit_predict(X)
print("KMeans 3 clusters: Silhouette Coefficient (-1,1): %0.3f"
% metrics.silhouette_score(X, lblsk3))
plotclusters(lblsk3)
lblsk4 = KMeans(n_clusters=4).fit_predict(X)
print("KMeans 4 clusters: Silhouette Coefficient (-1,1): %0.3f"
% metrics.silhouette_score(X, lblsk4))
plotclusters(lblsk4)
print("DBScan Silhouette Coefficient (-1,1): %0.3f"
% metrics.silhouette_score(X, labels))
plotclusters(labels)
print('Estimated number of clusters: %d' % n_clusters_)
print('Estimated number of noise points: %d' % n_noise_)
# These are metrics that can be calculated for clusters. Silhouette is the most widespread.
print("Homogeneity: %0.3f" % metrics.homogeneity_score(labels_true, labels))
print("Completeness: %0.3f" % metrics.completeness_score(labels_true, labels))
print("V-measure: %0.3f" % metrics.v_measure_score(labels_true, labels))
print("Adjusted Rand Index: %0.3f"
% metrics.adjusted_rand_score(labels_true, labels))
print("Adjusted Mutual Information: %0.3f"
% metrics.adjusted_mutual_info_score(labels_true, labels))
print(__doc__)