-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchannel1.py
executable file
·366 lines (292 loc) · 12.4 KB
/
channel1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
import random, numpy, math, gym
import matplotlib.pyplot as plt
#-------------------- BRAIN ---------------------------
from keras.models import Sequential
from keras.layers import *
from keras.optimizers import *
import channelConfig as channelConfig
#plt.ion()
global literation #Number of test literation
OBSERV_BATCH = channelConfig.OBSERV_BATCH
class Brain:
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.model = self._createModel()
# self.model.load_weights("cartpole-basic.h5")
def _createModel(self):
model = Sequential()
model.add(Dense(output_dim=64, activation='relu', input_dim=OBSERV_BATCH))#stateCnt
model.add(Dense(output_dim=64, activation='relu')) #######################################
model.add(Dense(output_dim=actionCnt, activation='linear'))
opt = RMSprop(lr=0.00025)
model.compile(loss='mse', optimizer=opt)
return model
def train(self, x, y, epoch=1, verbose=0):
self.model.fit(x, y, batch_size=64, nb_epoch=epoch, verbose=verbose)
def predict(self, s):
return self.model.predict(s)
def predict(self, s, target=False):
if target:
return self.model_.predict(s)
else:
return self.model.predict(s)
def predictOne(self, s, target=False):
#return self.predict(s.reshape(1, stateCnt), target=target).flatten()
print ("**************################", np.array(s))
return self.predict(np.array(s).reshape(1, OBSERV_BATCH), target=target).flatten()############################
#-------------------- MEMORY --------------------------
class Memory: # stored as ( s, a, r, s_ )
samples = []
def __init__(self, capacity):
self.capacity = capacity
def add(self, sample):
self.samples.append(sample)
if len(self.samples) > self.capacity:
self.samples.pop(0)
#print ("samples\n\n",self.samples)
def sample(self, n):
n = min(n, len(self.samples))
return random.sample(self.samples, n)
#-------------------- AGENT ---------------------------
MEMORY_CAPACITY = 100000
BATCH_SIZE = 256
GAMMA = 0.99
MAX_EPSILON = 1
MIN_EPSILON = 0.01
LAMBDA = 0.001 # speed of decay
class Agent:
steps = 0
epsilon = MAX_EPSILON
def __init__(self, stateCnt, actionCnt):
self.stateCnt = stateCnt
self.actionCnt = actionCnt
self.brain = Brain(stateCnt, actionCnt)
self.memory = Memory(MEMORY_CAPACITY)
def act(self, s):
if random.random() < self.epsilon:
print("*****random step*****")
return random.randint(0, self.actionCnt-1)
else:
print("*****predict step*****")
return numpy.argmax(self.brain.predictOne(s))
def observe(self, sample): # in (s, a, r, s_) format
self.memory.add(sample)
# slowly decrease Epsilon based on our eperience
self.steps += 1
self.epsilon = MIN_EPSILON + (MAX_EPSILON - MIN_EPSILON) * math.exp(-LAMBDA * self.steps)
def replay(self):
batch = self.memory.sample(BATCH_SIZE)
batchLen = len(batch)
#print (batch)
no_state = numpy.zeros(self.stateCnt)
states = numpy.array([ o[0] for o in batch ])
states_ = numpy.array([ (no_state if o[3] is None else o[3]) for o in batch ])
p = self.brain.predict(states)
p_ = self.brain.predict(states_)
#x = numpy.zeros((batchLen, self.stateCnt))
x = numpy.zeros((batchLen, np.array(OBSERV_BATCH))) #######################################
y = numpy.zeros((batchLen, self.actionCnt))
for i in range(batchLen):
o = batch[i]
s = o[0]; a = o[1]; r = o[2]; s_ = o[3]
t = p[i]
if s_ is None:
t[a] = r
else:
t[a] = r + GAMMA * numpy.amax(p_[i])
x[i] = s
y[i] = t
self.brain.train(x, y)
#-------------------- ENVIRONMENT ---------------------
class Environment:
def __init__(self, problem):
self.problem = problem
self.env = gym.make(problem)
self.channel_cnt = self.env.env.channel_cnt
self.pick_times = [0 for x in range(self.channel_cnt)]
self.overall_step = 0.000
self.hundred_step = [0.000 for x in range(0, 100)]
self.overall_connect = 0.000
self.overall_one_step = 0.000
self.hundred_one_step = [0.000 for x in range(0, 100)]
self.avg_step = 0
self.avg_step_100 = 0
def run(self, agent):
s = self.env.reset()
R = 0
step = 0 #sum of steps in run_time period
run_time = 0
global literation #Number of test literation
single_step = 0 #step for every successful try
f_agent = open("agent.csv", "w")
f_agent.write('state,action,reward,next_state\n')
f_channel = open("channel_available.csv", "w")
for i in range(self.channel_cnt):
f_channel.write(str(i+1))
if i < self.channel_cnt-1:
f_channel.write(',')
else:
f_channel.write('\n')
state_batch = [0 for x in range(0, OBSERV_BATCH)]
next_state_batch = [0 for x in range(0, OBSERV_BATCH)]
state_batch[0] = s
for i in range(0, literation):
self.env.render()
#a = agent.act(s)
a = agent.act(state_batch)
step += 1
single_step += 1
print("act------------:", a+1)
self.env.env.setStateBatch(state_batch)#################################################
s_, r, done, info = self.env.step(a+1)
channel_available = self.env.env.getChannelAvailable()
#self.env.env.getRewardChart()
#self.env.env.getTChart()
print("reward:", r)
# if done: # terminal state
# self.pick_times[s_-1-self.channel_cnt] += 1
# run_time += 1
# if (single_step == 1):
# self.overall_one_step += 1
# single_step = 0
# #s_ = None # it's ok to run without this line, almost no influence to performance
# #agent.observe( (s, a, r, s_) )
# #s_ = self.env.reset()
# print ("done\n")
for i in range(OBSERV_BATCH - 1, 0, -1):
next_state_batch[i] = state_batch[i-1]
next_state_batch[0]= s_
#agent.observe( (s, a, r, s_) ) #include add to memory
print ( "stuff to be observed#############",(np.array(state_batch), a, r, np.array(next_state_batch)) )
agent.observe( (np.array(state_batch), a, r, np.array(next_state_batch)) )###################################
agent.replay()
record_str = str(s)+','+str(a)+','+str(r)+','+str(s_)+'\n'
f_agent.write(record_str)
for j in range(self.channel_cnt):
f_channel.write(str(channel_available[j+1]))
if j < self.channel_cnt-1:
f_channel.write(',')
else:
f_channel.write('\n')
s = s_
for i in range(0, OBSERV_BATCH):
state_batch[i] = next_state_batch[i]
R += r
f_agent.close()
f_channel.close()
def draw_plots(self):
global literation
f_agent = open("agent.csv", "r")
f_agent.readline()
channel_chosen_cnt = [0] * self.channel_cnt
success_connexion = 0
block_num = 30
block_cnt = 0
local_ind_ls = []
local_success_ls = []
local_success = 0
for i in range(0, literation):
step_str = f_agent.readline()
s = int(step_str.split(",")[0]) # Read the current state
channel_chosen_cnt[self.env.env.getChannelNumber(s) - 1] += 1
if not self.env.env.isChannelBlocked(s): # success connexion
success_connexion += 1
local_success += 1
block_cnt += 1
if block_cnt % block_num == 0:
# count the success number of block_num communications
block_cnt = 0
local_ind_ls.append(i)
local_success_ls.append(local_success / block_num)
local_success = 0
block_cnt = 0
# Draw charts
plt.subplot(2,1,1) # Draw outage probability
plt.plot(local_ind_ls, local_success_ls)
plt.ylabel('Success Rate')
plt.subplot(2,1,2)
plt.bar(range(1, len(channel_chosen_cnt)+1), channel_chosen_cnt, color="blue", align='center')
plt.show()
f_agent.close()
# if done:
# break
# if (run_time == 10): #modifiable, output frequency
# break
#print("Total reward:", R)
#print("Steps taken:", step)
#self.hundred_step[int(self.overall_connect % 100)] = step
#self.overall_step += float(step)
# #if (step == 1):
# # self.overall_one_step += 1
# # self.hundred_one_step[int(self.overall_connect % 100)] = 1
# #else:
# # self.hundred_one_step[int(self.overall_connect % 100)] = 0
#
#self.overall_connect += 10
#avg_step = float(self.overall_step/self.overall_connect)
#print("Average steps:\t\t\t\t", avg_step)
#if int(self.overall_connect) > 100:
# avg_step_100 = float(sum(self.hundred_step)/100)
#else:
# avg_step_100 = float(sum(self.hundred_step)/int(self.overall_connect))
#print("Average steps of latest 100 tries:\t", avg_step_100)
#for i in range (self.channel_cnt):
# if self.pick_times[i] != 0:
# print("Channel %d picked times: %d" %(i+1, self.pick_times[i]))
#avg_one_step = float(self.overall_one_step/self.overall_connect)
#print("Overall success rate:\t\t\t%", avg_one_step * 100)
# #if int(self.overall_connect) > 100:
# # avg_one_step_100 = float(sum(self.hundred_one_step)/100)
# #else:
# # avg_one_step_100 = float(sum(self.hundred_one_step)/int(self.overall_connect))
# #print("Success rate of latest 100 tries:\t%", avg_one_step_100 * 100)
#print("Overall run time:", int(self.overall_connect))
#print("\n")
############################################################################### CHART PART
# ##if int(self.overall_connect) < 245:
#x_scale = numpy.log(int(self.overall_connect))
# ##else:
# ## x_scale = numpy.log10(int(self.overall_connect)) + 3.1
#plt.subplot(2,1,1)
# #plt.axis()
#if int(self.overall_connect) < 245:
# plt.scatter(x_scale, avg_step, c = 'r')
# plt.scatter(x_scale, avg_step_100, c = 'b')
# plt.scatter(x_scale, avg_one_step, c = 'y')
# plt.pause(0.00001)
#elif (int(self.overall_connect) < 1000) and (int(self.overall_connect) % 10 == 0):
# plt.scatter(x_scale, avg_step, c = 'r')
# plt.scatter(x_scale, avg_step_100, c = 'b')
# plt.scatter(x_scale, avg_one_step, c = 'y')
# plt.pause(0.00001)
#elif (int(self.overall_connect) < 2000) and (int(self.overall_connect) % 30 == 0):
# plt.scatter(x_scale, avg_step, c = 'r')
# plt.scatter(x_scale, avg_step_100, c = 'b')
# plt.scatter(x_scale, avg_one_step, c = 'y')
# plt.pause(0.00001)
#elif (int(self.overall_connect) < 30000) and (int(self.overall_connect) % 100 == 0):
# plt.scatter(x_scale, avg_step, c = 'r')
# plt.scatter(x_scale, avg_step_100, c = 'b')
# plt.scatter(x_scale, avg_one_step, c = 'y')
# plt.pause(0.00001)
#plt.subplot(2,1,2)
#if (int(self.overall_connect) % 100 == 0):
# plt.bar(range(len(self.pick_times)), self.pick_times, color="blue")
#-------------------- MAIN ----------------------------
global literation
literation = channelConfig.literation
PROBLEM = 'Channel-v0'
env = Environment(PROBLEM)
stateCnt = np.array(1)#env.env.observation_space.shape[0]
actionCnt = env.channel_cnt
agent = Agent(stateCnt, actionCnt)
#env.run(agent)
#env.run(agent)
#env.run(agent)
try:
#while True:
env.run(agent)
env.draw_plots()
finally:
agent.brain.model.save("channel.h5")