Skip to content

Commit 86b22c0

Browse files
Create 10.py
Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs
1 parent aa3162c commit 86b22c0

File tree

1 file changed

+36
-0
lines changed

1 file changed

+36
-0
lines changed

10.py

+36
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,36 @@
1+
import numpy as np
2+
from bokeh.plotting import figure, show, output_notebook
3+
from bokeh.layouts import gridplot
4+
from bokeh.io import push_notebook
5+
6+
def local_regression(x0, X, Y, tau):
7+
x0 = np.r_[1, x0] # Add one to avoid the loss in information
8+
X = np.c_[np.ones(len(X)), X]
9+
xw = X.T * radial_kernel(x0, X, tau)
10+
beta = np.linalg.pinv(xw @ X) @ xw @ Y
11+
return x0 @ beta
12+
13+
def radial_kernel(x0, X, tau):
14+
return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
15+
16+
n = 1000
17+
X = np.linspace(-3, 3, num=n)
18+
print("The Data Set ( 10 Samples) X :\n",X[1:10])
19+
Y = np.log(np.abs(X ** 2 - 1) + .5)
20+
print("The Fitting Curve Data Set (10 Samples) Y :\n",Y[1:10])
21+
X += np.random.normal(scale=.1, size=n)
22+
print("Normalised (10 Samples) X :\n",X[1:10])
23+
24+
domain = np.linspace(-3, 3, num=300)
25+
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])
26+
def plot_lwr(tau):
27+
prediction = [local_regression(x0, X, Y, tau) for x0 in domain]
28+
plot = figure(plot_width=400, plot_height=400)
29+
plot.title.text='tau=%g' % tau
30+
plot.scatter(X, Y, alpha=.3)
31+
plot.line(domain, prediction, line_width=2, color='red')
32+
return plot
33+
34+
show(gridplot([
35+
[plot_lwr(10.), plot_lwr(1.)],
36+
[plot_lwr(0.1), plot_lwr(0.01)]]))

0 commit comments

Comments
 (0)