forked from mfem/mfem
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ex36p.cpp
523 lines (444 loc) · 15.3 KB
/
ex36p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
// MFEM Example 36 - Parallel Version
//
// Compile with: make ex36p
//
// Sample runs: mpirun -np 4 ex36p -o 2
// mpirun -np 4 ex36p -o 2 -r 4
//
// Description: This example code demonstrates the use of MFEM to solve the
// bound-constrained energy minimization problem
//
// minimize ||∇u||² subject to u ≥ ϕ in H¹₀.
//
// This is known as the obstacle problem, and it is a simple
// mathematical model for contact mechanics.
//
// In this example, the obstacle ϕ is a half-sphere centered
// at the origin of a circular domain Ω. After solving to a
// specified tolerance, the numerical solution is compared to
// a closed-form exact solution to assess accuracy.
//
// The problem is discretized and solved using the proximal
// Galerkin finite element method, introduced by Keith and
// Surowiec [1].
//
// This example highlights the ability of MFEM to deliver high-
// order solutions to variation inequality problems and
// showcases how to set up and solve nonlinear mixed methods.
//
// [1] Keith, B. and Surowiec, T. (2023) Proximal Galerkin: A structure-
// preserving finite element method for pointwise bound constraints.
// arXiv:2307.12444 [math.NA]
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
real_t spherical_obstacle(const Vector &pt);
real_t exact_solution_obstacle(const Vector &pt);
void exact_solution_gradient_obstacle(const Vector &pt, Vector &grad);
class LogarithmGridFunctionCoefficient : public Coefficient
{
protected:
GridFunction *u; // grid function
Coefficient *obstacle;
real_t min_val;
public:
LogarithmGridFunctionCoefficient(GridFunction &u_, Coefficient &obst_,
real_t min_val_=-36)
: u(&u_), obstacle(&obst_), min_val(min_val_) { }
real_t Eval(ElementTransformation &T, const IntegrationPoint &ip) override;
};
class ExponentialGridFunctionCoefficient : public Coefficient
{
protected:
GridFunction *u;
Coefficient *obstacle;
real_t min_val;
real_t max_val;
public:
ExponentialGridFunctionCoefficient(GridFunction &u_, Coefficient &obst_,
real_t min_val_=0.0, real_t max_val_=1e6)
: u(&u_), obstacle(&obst_), min_val(min_val_), max_val(max_val_) { }
real_t Eval(ElementTransformation &T, const IntegrationPoint &ip) override;
};
int main(int argc, char *argv[])
{
// 0. Initialize MPI and HYPRE.
Mpi::Init();
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 1. Parse command-line options.
int order = 1;
int max_it = 10;
int ref_levels = 3;
real_t alpha = 1.0;
real_t tol = 1e-5;
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&ref_levels, "-r", "--refs",
"Number of h-refinements.");
args.AddOption(&max_it, "-mi", "--max-it",
"Maximum number of iterations");
args.AddOption(&tol, "-tol", "--tol",
"Stopping criteria based on the difference between"
"successive solution updates");
args.AddOption(&alpha, "-step", "--step",
"Step size alpha");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
// 2. Read the mesh from the mesh file.
const char *mesh_file = "../data/disc-nurbs.mesh";
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
// 3. Postprocess the mesh.
// 3A. Refine the mesh to increase the resolution.
for (int l = 0; l < ref_levels; l++)
{
mesh.UniformRefinement();
}
// 3B. Interpolate the geometry after refinement to control geometry error.
// NOTE: Minimum second-order interpolation is used to improve the accuracy.
int curvature_order = max(order,2);
mesh.SetCurvature(curvature_order);
// 3C. Rescale the domain to a unit circle (radius = 1).
GridFunction *nodes = mesh.GetNodes();
real_t scale = 2*sqrt(2);
*nodes /= scale;
ParMesh pmesh(MPI_COMM_WORLD, mesh);
mesh.Clear();
// 4. Define the necessary finite element spaces on the mesh.
H1_FECollection H1fec(order+1, dim);
ParFiniteElementSpace H1fes(&pmesh, &H1fec);
L2_FECollection L2fec(order-1, dim);
ParFiniteElementSpace L2fes(&pmesh, &L2fec);
int num_dofs_H1 = H1fes.GetTrueVSize();
MPI_Allreduce(MPI_IN_PLACE, &num_dofs_H1, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
int num_dofs_L2 = L2fes.GetTrueVSize();
MPI_Allreduce(MPI_IN_PLACE, &num_dofs_L2, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
if (myid == 0)
{
cout << "Number of H1 finite element unknowns: "
<< num_dofs_H1 << endl;
cout << "Number of L2 finite element unknowns: "
<< num_dofs_L2 << endl;
}
Array<int> offsets(3);
offsets[0] = 0;
offsets[1] = H1fes.GetVSize();
offsets[2] = L2fes.GetVSize();
offsets.PartialSum();
Array<int> toffsets(3);
toffsets[0] = 0;
toffsets[1] = H1fes.GetTrueVSize();
toffsets[2] = L2fes.GetTrueVSize();
toffsets.PartialSum();
BlockVector x(offsets), rhs(offsets);
x = 0.0; rhs = 0.0;
BlockVector tx(toffsets), trhs(toffsets);
tx = 0.0; trhs = 0.0;
// 5. Determine the list of true (i.e. conforming) essential boundary dofs.
Array<int> empty;
Array<int> ess_tdof_list;
if (pmesh.bdr_attributes.Size())
{
Array<int> ess_bdr(pmesh.bdr_attributes.Max());
ess_bdr = 1;
H1fes.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 6. Define an initial guess for the solution.
auto IC_func = [](const Vector &x)
{
real_t r0 = 1.0;
real_t rr = 0.0;
for (int i=0; i<x.Size(); i++)
{
rr += x(i)*x(i);
}
return r0*r0 - rr;
};
ConstantCoefficient one(1.0);
ConstantCoefficient zero(0.0);
// 7. Define the solution vectors as a finite element grid functions
// corresponding to the fespaces.
ParGridFunction u_gf, delta_psi_gf;
u_gf.MakeRef(&H1fes,x,offsets[0]);
delta_psi_gf.MakeRef(&L2fes,x,offsets[1]);
delta_psi_gf = 0.0;
ParGridFunction u_old_gf(&H1fes);
ParGridFunction psi_old_gf(&L2fes);
ParGridFunction psi_gf(&L2fes);
u_old_gf = 0.0;
psi_old_gf = 0.0;
// 8. Define the function coefficients for the solution and use them to
// initialize the initial guess
FunctionCoefficient exact_coef(exact_solution_obstacle);
VectorFunctionCoefficient exact_grad_coef(dim,exact_solution_gradient_obstacle);
FunctionCoefficient IC_coef(IC_func);
ConstantCoefficient f(0.0);
FunctionCoefficient obstacle(spherical_obstacle);
u_gf.ProjectCoefficient(IC_coef);
u_old_gf = u_gf;
// 9. Initialize the slack variable ψₕ = ln(uₕ)
LogarithmGridFunctionCoefficient ln_u(u_gf, obstacle);
psi_gf.ProjectCoefficient(ln_u);
psi_old_gf = psi_gf;
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock;
if (visualization)
{
sol_sock.open(vishost,visport);
sol_sock.precision(8);
}
// 10. Iterate
int k;
int total_iterations = 0;
real_t increment_u = 0.1;
for (k = 0; k < max_it; k++)
{
ParGridFunction u_tmp(&H1fes);
u_tmp = u_old_gf;
if (myid == 0)
{
mfem::out << "\nOUTER ITERATION " << k+1 << endl;
}
int j;
for ( j = 0; j < 10; j++)
{
total_iterations++;
ConstantCoefficient alpha_cf(alpha);
ParLinearForm b0,b1;
b0.Update(&H1fes,rhs.GetBlock(0),0);
b1.Update(&L2fes,rhs.GetBlock(1),0);
ExponentialGridFunctionCoefficient exp_psi(psi_gf, zero);
ProductCoefficient neg_exp_psi(-1.0,exp_psi);
GradientGridFunctionCoefficient grad_u_old(&u_old_gf);
ProductCoefficient alpha_f(alpha, f);
GridFunctionCoefficient psi_cf(&psi_gf);
GridFunctionCoefficient psi_old_cf(&psi_old_gf);
SumCoefficient psi_old_minus_psi(psi_old_cf, psi_cf, 1.0, -1.0);
b0.AddDomainIntegrator(new DomainLFIntegrator(alpha_f));
b0.AddDomainIntegrator(new DomainLFIntegrator(psi_old_minus_psi));
b0.Assemble();
b1.AddDomainIntegrator(new DomainLFIntegrator(exp_psi));
b1.AddDomainIntegrator(new DomainLFIntegrator(obstacle));
b1.Assemble();
ParBilinearForm a00(&H1fes);
a00.SetDiagonalPolicy(mfem::Operator::DIAG_ONE);
a00.AddDomainIntegrator(new DiffusionIntegrator(alpha_cf));
a00.Assemble();
HypreParMatrix A00;
a00.FormLinearSystem(ess_tdof_list, x.GetBlock(0), rhs.GetBlock(0),
A00, tx.GetBlock(0), trhs.GetBlock(0));
ParMixedBilinearForm a10(&H1fes,&L2fes);
a10.AddDomainIntegrator(new MixedScalarMassIntegrator());
a10.Assemble();
HypreParMatrix A10;
a10.FormRectangularLinearSystem(ess_tdof_list, empty, x.GetBlock(0),
rhs.GetBlock(1),
A10, tx.GetBlock(0), trhs.GetBlock(1));
HypreParMatrix *A01 = A10.Transpose();
ParBilinearForm a11(&L2fes);
a11.AddDomainIntegrator(new MassIntegrator(neg_exp_psi));
// NOTE: Shift the spectrum of the Hessian matrix for additional
// stability (Quasi-Newton).
ConstantCoefficient eps_cf(-1e-6);
if (order == 1)
{
// NOTE: ∇ₕuₕ = 0 for constant functions.
// Therefore, we use the mass matrix to shift the spectrum
a11.AddDomainIntegrator(new MassIntegrator(eps_cf));
}
else
{
a11.AddDomainIntegrator(new DiffusionIntegrator(eps_cf));
}
a11.Assemble();
a11.Finalize();
HypreParMatrix A11;
a11.FormSystemMatrix(empty, A11);
BlockOperator A(toffsets);
A.SetBlock(0,0,&A00);
A.SetBlock(1,0,&A10);
A.SetBlock(0,1,A01);
A.SetBlock(1,1,&A11);
BlockDiagonalPreconditioner prec(toffsets);
HypreBoomerAMG P00(A00);
P00.SetPrintLevel(0);
HypreSmoother P11(A11);
prec.SetDiagonalBlock(0,&P00);
prec.SetDiagonalBlock(1,&P11);
GMRESSolver gmres(MPI_COMM_WORLD);
gmres.SetPrintLevel(-1);
gmres.SetRelTol(1e-8);
gmres.SetMaxIter(20000);
gmres.SetKDim(500);
gmres.SetOperator(A);
gmres.SetPreconditioner(prec);
gmres.Mult(trhs,tx);
u_gf.SetFromTrueDofs(tx.GetBlock(0));
delta_psi_gf.SetFromTrueDofs(tx.GetBlock(1));
u_tmp -= u_gf;
real_t Newton_update_size = u_tmp.ComputeL2Error(zero);
u_tmp = u_gf;
real_t gamma = 1.0;
delta_psi_gf *= gamma;
psi_gf += delta_psi_gf;
if (visualization)
{
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock << "solution\n" << pmesh << u_gf << "window_title 'Discrete solution'"
<< flush;
}
if (myid == 0)
{
mfem::out << "Newton_update_size = " << Newton_update_size << endl;
}
delete A01;
if (Newton_update_size < increment_u)
{
break;
}
}
u_tmp = u_gf;
u_tmp -= u_old_gf;
increment_u = u_tmp.ComputeL2Error(zero);
if (myid == 0)
{
mfem::out << "Number of Newton iterations = " << j+1 << endl;
mfem::out << "Increment (|| uₕ - uₕ_prvs||) = " << increment_u << endl;
}
u_old_gf = u_gf;
psi_old_gf = psi_gf;
if (increment_u < tol || k == max_it-1)
{
break;
}
real_t H1_error = u_gf.ComputeH1Error(&exact_coef,&exact_grad_coef);
if (myid == 0)
{
mfem::out << "H1-error (|| u - uₕᵏ||) = " << H1_error << endl;
}
}
if (myid == 0)
{
mfem::out << "\n Outer iterations: " << k+1
<< "\n Total iterations: " << total_iterations
<< "\n Total dofs: " << num_dofs_H1 + num_dofs_L2
<< endl;
}
// 11. Exact solution.
if (visualization)
{
socketstream err_sock(vishost, visport);
err_sock.precision(8);
ParGridFunction error_gf(&H1fes);
error_gf.ProjectCoefficient(exact_coef);
error_gf -= u_gf;
err_sock << "parallel " << num_procs << " " << myid << "\n";
err_sock << "solution\n" << pmesh << error_gf << "window_title 'Error'" <<
flush;
}
{
real_t L2_error = u_gf.ComputeL2Error(exact_coef);
real_t H1_error = u_gf.ComputeH1Error(&exact_coef,&exact_grad_coef);
ExponentialGridFunctionCoefficient u_alt_cf(psi_gf,obstacle);
ParGridFunction u_alt_gf(&L2fes);
u_alt_gf.ProjectCoefficient(u_alt_cf);
real_t L2_error_alt = u_alt_gf.ComputeL2Error(exact_coef);
if (myid == 0)
{
mfem::out << "\n Final L2-error (|| u - uₕ||) = " << L2_error <<
endl;
mfem::out << " Final H1-error (|| u - uₕ||) = " << H1_error << endl;
mfem::out << " Final L2-error (|| u - ϕ - exp(ψₕ)||) = " << L2_error_alt <<
endl;
}
}
return 0;
}
real_t LogarithmGridFunctionCoefficient::Eval(ElementTransformation &T,
const IntegrationPoint &ip)
{
MFEM_ASSERT(u != NULL, "grid function is not set");
real_t val = u->GetValue(T, ip) - obstacle->Eval(T, ip);
return max(min_val, log(val));
}
real_t ExponentialGridFunctionCoefficient::Eval(ElementTransformation &T,
const IntegrationPoint &ip)
{
MFEM_ASSERT(u != NULL, "grid function is not set");
real_t val = u->GetValue(T, ip);
return min(max_val, max(min_val, exp(val) + obstacle->Eval(T, ip)));
}
real_t spherical_obstacle(const Vector &pt)
{
real_t x = pt(0), y = pt(1);
real_t r = sqrt(x*x + y*y);
real_t r0 = 0.5;
real_t beta = 0.9;
real_t b = r0*beta;
real_t tmp = sqrt(r0*r0 - b*b);
real_t B = tmp + b*b/tmp;
real_t C = -b/tmp;
if (r > b)
{
return B + r * C;
}
else
{
return sqrt(r0*r0 - r*r);
}
}
real_t exact_solution_obstacle(const Vector &pt)
{
real_t x = pt(0), y = pt(1);
real_t r = sqrt(x*x + y*y);
real_t r0 = 0.5;
real_t a = 0.348982574111686;
real_t A = -0.340129705945858;
if (r > a)
{
return A * log(r);
}
else
{
return sqrt(r0*r0-r*r);
}
}
void exact_solution_gradient_obstacle(const Vector &pt, Vector &grad)
{
real_t x = pt(0), y = pt(1);
real_t r = sqrt(x*x + y*y);
real_t r0 = 0.5;
real_t a = 0.348982574111686;
real_t A = -0.340129705945858;
if (r > a)
{
grad(0) = A * x / (r*r);
grad(1) = A * y / (r*r);
}
else
{
grad(0) = - x / sqrt( r0*r0 - r*r );
grad(1) = - y / sqrt( r0*r0 - r*r );
}
}