-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_search.py
37 lines (28 loc) · 1.12 KB
/
random_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import random
import sys
from hptuning import bayes_opt as hptuning
def run_experiment(model_config, hptuning_config, dataset, label):
domain, max_trials = hptuning.get_domain(hptuning_config)
black_box = hptuning.MLBlackBox(model_config, domain, dataset)
report_file = 'log/randomsearch_evaluations_{}.log'.format(label)
var_names = []
for sub_domain in domain:
var_names.append(sub_domain['name'])
var_names = '\t'.join(var_names)
with open(report_file, 'w') as f:
f.write('iteration\teval_loss\t{}\n'.format(var_names))
for i in range(int(max_trials)):
hparams = [[]]
for sub_domain in domain:
hparams[0].append(random.choice(sub_domain['domain']))
eval_loss = black_box.f(hparams)
with open(report_file, 'a') as f:
hparam_str = '\t'.join([str(hp) for hp in hparams[0]])
f.write('{}\t{}\t{}\n'.format(i + 1, eval_loss, hparam_str))
def main():
args = hptuning._parse_arguments(sys.argv[1:])
hptuning._set_logging(args.log_level.upper())
run_experiment(args.model_config, args.hptuning_config,
args.dataset, args.label)
if __name__ == '__main__':
main()