-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
91 lines (71 loc) · 3.18 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return -lim, lim
class ActorNetwork(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed=10, fc_units=384):
"""Initialize parameters and build model.
:param state_size: (int), Dimension of each state
:param action_size: (int), Dimension of each action
:param seed: (int), Random seed
:param fc_units: (int), Number of nodes in the first and second hidden layer
"""
super(ActorNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc_units)
self.fc2 = nn.Linear(fc_units, action_size)
self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
"""Maps states -> actions.
:param state: (PyTorch tensor) A batch of states
:returns: PyTorch tensor containing the action values
"""
x = F.relu(self.fc1(state))
return torch.tanh(self.fc2(x))
def get_action(self, state):
"""Maps states -> actions.
:param state: (nd-array), A single state
:returns: Numpy array containing the action values
"""
state = torch.FloatTensor(state).unsqueeze(0).to(device)
action = self.forward(state)
return action.squeeze(0).detach().cpu().numpy()
class CriticNetwork(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed=10, fcs1_units=512, fc2_units=256, fc3_units=128):
"""Initialize parameters and build model.
:param state_size: (int), Dimension of each state
:param action_size: (int), Dimension of each action
:param seed: (int), Random seed
:param fcs1_units: (int), Number of nodes in the first hidden layer
:param fc2_units: (int), Number of nodes in the second hidden layer
:param fc3_units: (int), Number of nodes in the third hidden layer
"""
super(CriticNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.fc2 = nn.Linear(fcs1_units+action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, fc3_units)
self.fc4 = nn.Linear(fc3_units, 1)
self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(*hidden_init(self.fc3))
self.fc4.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
xs = F.leaky_relu(self.fcs1(state))
x = torch.cat((xs, action), dim=1)
x = F.leaky_relu(self.fc2(x))
x = F.leaky_relu(self.fc3(x))
return self.fc4(x)