This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 325
/
util.py
132 lines (104 loc) · 3.7 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import os
import pickle
import numpy as np
import torch
from torch.utils.data.sampler import Sampler
import models
def load_model(path):
"""Loads model and return it without DataParallel table."""
if os.path.isfile(path):
print("=> loading checkpoint '{}'".format(path))
checkpoint = torch.load(path)
# size of the top layer
N = checkpoint['state_dict']['top_layer.bias'].size()
# build skeleton of the model
sob = 'sobel.0.weight' in checkpoint['state_dict'].keys()
model = models.__dict__[checkpoint['arch']](sobel=sob, out=int(N[0]))
# deal with a dataparallel table
def rename_key(key):
if not 'module' in key:
return key
return ''.join(key.split('.module'))
checkpoint['state_dict'] = {rename_key(key): val
for key, val
in checkpoint['state_dict'].items()}
# load weights
model.load_state_dict(checkpoint['state_dict'])
print("Loaded")
else:
model = None
print("=> no checkpoint found at '{}'".format(path))
return model
class UnifLabelSampler(Sampler):
"""Samples elements uniformely accross pseudolabels.
Args:
N (int): size of returned iterator.
images_lists: dict of key (target), value (list of data with this target)
"""
def __init__(self, N, images_lists):
self.N = N
self.images_lists = images_lists
self.indexes = self.generate_indexes_epoch()
def generate_indexes_epoch(self):
nmb_non_empty_clusters = 0
for i in range(len(self.images_lists)):
if len(self.images_lists[i]) != 0:
nmb_non_empty_clusters += 1
size_per_pseudolabel = int(self.N / nmb_non_empty_clusters) + 1
res = np.array([])
for i in range(len(self.images_lists)):
# skip empty clusters
if len(self.images_lists[i]) == 0:
continue
indexes = np.random.choice(
self.images_lists[i],
size_per_pseudolabel,
replace=(len(self.images_lists[i]) <= size_per_pseudolabel)
)
res = np.concatenate((res, indexes))
np.random.shuffle(res)
res = list(res.astype('int'))
if len(res) >= self.N:
return res[:self.N]
res += res[: (self.N - len(res))]
return res
def __iter__(self):
return iter(self.indexes)
def __len__(self):
return len(self.indexes)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def learning_rate_decay(optimizer, t, lr_0):
for param_group in optimizer.param_groups:
lr = lr_0 / np.sqrt(1 + lr_0 * param_group['weight_decay'] * t)
param_group['lr'] = lr
class Logger(object):
""" Class to update every epoch to keep trace of the results
Methods:
- log() log and save
"""
def __init__(self, path):
self.path = path
self.data = []
def log(self, train_point):
self.data.append(train_point)
with open(os.path.join(self.path), 'wb') as fp:
pickle.dump(self.data, fp, -1)