Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

关于分块kalman 滤波 #3

Open
ydaj opened this issue May 17, 2022 · 2 comments
Open

关于分块kalman 滤波 #3

ydaj opened this issue May 17, 2022 · 2 comments

Comments

@ydaj
Copy link

ydaj commented May 17, 2022

请问博主,在频域分块kalman算法里,更新滤波器系数时,对于constrain matrix GL您在代码里好像没有体现出来啊,另外,为啥计算X(k)P(k)XH(k)时候先计算X2之后要按行求和啊,X2 = np.sum(np.abs(self.X) ** 2, axis=0)
Re = 0.5 * self.Rm * X2 + np.abs(E) ** 2 / self.N

@nicheng0019
Copy link

请问博主,在频域分块kalman算法里,更新滤波器系数时,对于constrain matrix GL您在代码里好像没有体现出来啊,另外,为啥计算X(k)P(k)XH(k)时候先计算X2之后要按行求和啊,X2 = np.sum(np.abs(self.X) ** 2, axis=0) Re = 0.5 * self.Rm * X2 + np.abs(E) ** 2 / self.N

请问频域分块kalman算法在计算mu = self.P / (Pe + 1e-10)的时候为什么没有乘以0.5?这个代码实现参照的论文是什么?谢谢

@fjiang9
Copy link

fjiang9 commented Sep 22, 2022

@ydaj constrain matrix的实现在这呢

if self.partial_constrain:
h = ifft(self.H[self.p])
h[self.M:] = 0
self.H[self.p] = fft(h)
self.p = (self.p + 1) % self.N
else:
for p in range(self.N):
h = ifft(self.H[p])
h[self.M:] = 0
self.H[p] = fft(h)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants