Data for both Mappy and OpenCraterTool hands-on are described in nappy-opencratertool data info
Please refer to the documentation on https://mappy.readthedocs.io/en/master/
Repository: https://github.com/europlanet-gmap/mappy
- Tips and troubleshooting linked on the QGIS relevant document
Please refer to the documentation on the repository below:
Repository: https://github.com/thomasheyer/OpenCraterTool and (fork) https://github.com/europlanet-gmap/OpenCraterTool
Courtesy R. Wagner (VESTA/DAWN hands-on team)
(1)Arvidson, R., Boyce, J., Chapman, C., Cintala, M., Fulchignoni, M., Moore, H., Neukum, G., Schultz, P., Soderblom, L., Strom, B., Woronow, A., Young, R., 1979. Standard techniques for presentation and analysis of crater size-frequency data. Icarus 37, 467–474. (1) = CRATER ANALYSIS TECHNIQUES WORKING GROUP
chapters)
Neukum, G., Ivanov, B. A., 1994. Crater size distributions and impact probabilities on Earth from lunar, terrestrial-type planets, and asteroid cratering data. In: Gehrels, T. (Ed.), Hazards due to comets and asteroids. Univ. of Arizona Press, Tucson, Az., p. 359–416.
Neukum, G., Ivanov, B. A., Hartmann, W. K., 2001. Cratering records in the inner solar system in relation to the lunar reference system. Space Sci. Rev. 96, 55–86.
Ivanov, B. A., Neukum, G., Bottke Jr., W. F., Hartmann, W. K., 2002. The comparison of size- frequency distributions of impact craters and asteroids and the planetary cratering rate. In: Bottke Jr., W. F., Cellino, A., Paolicchi, P., Binzel, R. P. (Eds.), Asteroids III. Univ. of Arizona Press, Tucson, Az., p. 89–101.
Öpik, E. J., 1960. The lunar surface as an impact counter. Mon. Not. Roy. Astr. Soc. 120, 404–411. Strom, R. G., Malhotra, R., Ito, T., Yoshida, F., Kring, D. A., 2005. The origin of planetary impactors in the inner solar system. Science 309, 1847–1850.
Werner, S. C., Ivanov, B. A. 2015. Exogenic dynamics, cratering, and surface ages. In: T. Spohn (Ed.), Treatise on Geophysics, Vol. 10 – Planets and Moons. Elsevier B. V., Amsterdam/NL, p. 327–365. Cratering in the early solar system
Baldwin, R. B., 2006. Was there ever a Terminal Lunar Cataclysm ? With lunar viscosity arguments. Icarus 184, 308–318.
Bottke, W. F., Vokrouhlický, D., Marshall, R., Nesvorný, D., Morbidelli, A., Deienno, R., Marchi, S.,
Dones, L., Levison, H. F., 2023. The collisional evolution of the primordial Kuiper Belt, its destabilized population, and the Trojan asteroids. Planet. Sci. J. 4:168, https://doi.org/10.3847/PSJ/ace7cd.
Hartmann, W. K., 2003. Megaregolith evolution and cratering cataclysm models – Lunar cataclysm as a misconception (28 years later). Meteor. Planet. Sci. 38, Nr. 4, 579–593.
Morbidelli, A., Marchi, S., Bottke, W. F., Kring, D. A., 2012. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355, 144–151.
Morbidelli, A., Nesvorný, D., Laurenz, V., Marchi, S., Rubie, D. C., Elkins-Tanton, L., Wieczorek, M., Jacobson, S., 2018. The timeline of the lunar bombardment: Revisited. Icarus 305, 262–276. Special topic: saturation/equilibrium
Hartmann, W. K., 1984. Does crater „saturation equilibrium“ exist in the solar system ? Icarus 60, 56– 74.
Richardson, J. E., 2009. Cratering saturation and equilibrium: a new model looks at an old problem. Icarus 204, 697–715.
Woronow, A., 1978. A general cratering-history model and its implications for the lunar highlands. Icarus 34, 76–88.
Bierhaus, E. B., McEwen, A. S., Robbins, S. J., Singer, K. N., Dones L, Kirchoff, M. R., Williams, J.- P., 2018. Secondary craters and ejecta across the solar system: Populations and effects on impact- crater-based chronologies. Meteor. Planet. Sci. 53 (4), 638–671.
Heyer, T., Iqbal, W., Oetting, A., Hiesinger, H., van der Bogert, C. H., & Schmedemann, N. (2023). A comparative analysis of global lunar crater catalogs using OpenCraterTool–An open source tool to determine and compare crater size-frequency measurements. Planetary and Space Science, 231, 105687. https://doi.org/10.1016/j.pss.2023.105687
Kneissl, T., van Gasselt, S., Neukum, G., 2011. Map-projection-independent crater size-frequency determination in GIS environments – New software tool for ArcGIS. Planet. Space Sci. 59, 1243– 1254.
Kneissl, T., Michael, G. G., Platz, T., Walter, S. H. G., 2015. Age determination of linear surface features using the Buffered Crater Counting Approach – Case studies of the Sirenum and Fortuna Fossae graben systems on Mars. Icarus 250, 384–394.
Kneissl, T., Michael, G. G., Schmedemann, N., 2016. Treatment of non-sparse cratering in planetary surface dating. Icarus 277, 187–195.
Riedel, C., Michael, G., Kneissl, T., Orgel, C., Hiesinger, H., van der Bogert, C., 2018. A new tool to account for crater obliteration effects in crater size-frequency distribution measurements. Earth Space Sci. 5, https://doi.org/10.1002/2018EA000383.
Michael, G., Neukum, G., 2008. Surface dating: software tool for analysing crater size-frequency distributions including those showing partial resurfacing events. Lunar Planet. Sci. Conf. XXXIX, abstr. No. 1780.
Michael, G. G., Neukum, G., 2010. Planetary surface dating from crater size-frequency distribution measurements: Partial resurfacing events and statistical uncertainty. Earth Planet. Sci. Lett. 294, 223– 229.
Michael, G. G., Kneissl, T., Neesemann, A., 2016. Planetary surface dating from crater size-frequency distribution measurements: Poisson timing analysis. Icarus 277, 279–285.
O’Brien, D. P., Marchi, S., Morbidelli, A., Bottke, W. F., Schenk, P. M., Russell, C. T., Raymond, C. A., 2014. Constraining the cratering chronology of Vesta. Planet. Space Sci. 103, 131–142.
Schmedemann, N., Kneissl, T., Ivanov, B. A., Michael, G. G., Wagner, R. J., Neukum, G., Ruesch, O., Hiesinger, H., Krohn, K., Roatsch, T., Preusker, F., Sierks, H., Jaumann, R., Reddy, V., Nathues, A., Walter, S. H. G., Neesemann, A., Raymond, C. A., Russell, C. T., 2014. The cratering record, chronology and surface ages of (4) Vesta in comparison to smaller asteroids and the ages of HED meteorites. Planet. Space Sci. 103, 104–130.
Hiesinger, H., Marchi, S., Schmedemann, N., Schenk, P., Pasckert, J. H., Neesemann, A., O’Brien, D. P., Kneissl, T., Ermakov, A. I., Fu, R. R., Bland, M. T., Nathues, A., Platz, T., Williams, D. A., Jaumann, R., Castillo-Rogez, J. C., Ruesch, O., Schmidt, B., Park, R. S., Preusker, F., Buczkowski, D. L., Russell, C. T., Raymond, C. A., 2016. Cratering on Ceres: Implications for its crust and avolution. Science 353, doi:10./1126/science.aaf4759.