-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_feeder.py
169 lines (129 loc) · 4.45 KB
/
data_feeder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from __future__ import print_function, division
import os
import torch
import numpy as np
from torch.utils.data import Dataset
import pickle as plk
class DrivingData(Dataset):
def __init__(self, x, y):
self.X = x
self.Y = y
def __getitem__(self, idx):
img = self.X[idx]
label = self.Y[idx]
img = torch.from_numpy(img)
# if self.transform:
# sample = self.transform(sample)
return img, label
def __len__(self):
return len(self.Y)
def rgb2gray(rgb):
"""Convert RGB image to grayscale
Parameters:
rgb : RGB image
Returns:
gray : grayscale image
"""
return np.dot(rgb[...,:3], [0.299, 0.587, 0.144])
def reduceDimRGBtoGray(arr):
return arr[:, :, :, :-2]
def augmentation_flip(inputs, labels):
inputs_flipped = np.flip(inputs, 2)
labels_flipped = labels * -1
return np.concatenate((inputs, inputs_flipped), 0), np.concatenate((labels, labels_flipped), 0)
def getDrivingData(speed=0, track=0, num_training_percentage=80, num_validation_percentage=20, preprocess=True, greyscale=False, augmentation=False, remove = false, limit = 3):
"""
Load and preprocess the training dataset.
Transpose image data from H, W, C to C, H, W and group as N, H, W, C.
Rescale the features and subtract the mean.
Return a tuble of Dataset objects, in respect to <training:validation>.
If speed is set and track not set, then return all tracks with that speed
If track is set and speed not set, then return all data from the track
If speed and track are not set, return all data
If speed and track are set, return the specific file
"""
tracks = [0, 1, 2, 3, 4]
speeds = [0, 30, 40, 50, 60, 70, 80, 90]
filenames = []
if speed not in speeds or track not in tracks:
print("Data could not be found for track %d and speed %d" % (track, speed))
exit()
# If speed and track are set, return the specific file
if speed is not 0 and track is not 0:
filenames.append("racingdata/#track=%d#speed=%d.txt" % (track, speed))
# If speed is set and track not set, then return all tracks with that speed
if speed is not 0 and track is 0:
for t in tracks:
if t == 0:
continue
filenames.append("racingdata/#track=%d#speed=%d.txt" % (t, speed))
# If track is set and speed not set, then return all data from the track
if speed is 0 and track is not 0:
for s in speeds:
if s == 0:
continue
filenames.append("racingdata/#track=%d#speed=%d.txt" % (track, s))
# If speed and track are not set, return all data
if speed is 0 and track is 0:
for t in tracks:
for s in speeds:
if t == 0 or s == 0:
continue
filenames.append("racingdata/#track=%d#speed=%d.txt" % (t, s))
X = []
Y = []
for filename in filenames:
with open(filename, 'rb') as file:
racedata = plk.load(file)
x, y = zip(*racedata)
if len(X) == 0:
X = np.array(x, dtype='float32')
Y = np.array(y, dtype='float32')
else:
X = np.concatenate((X,np.array(x, dtype='float32')))
Y = np.concatenate((Y,np.array(y, dtype='float32')))
# greyscale
if greyscale:
print("Converting to grey scale")
for i in range(X.shape[0]):
X[i, :, :, 0] = rgb2gray(X[i])
X = reduceDimRGBtoGray(X)
# augmentation
if augmentation:
print("Augmentation flipping")
X, Y = augmentation_flip(X, Y)
# preprocess
# am I messing up with the first dim here?
if preprocess:
print("Preprocessing: feature normalization")
X /= 255.0
X -= np.mean(X, axis=0)
if remove:
while i < X.shape[0]:
if Y[i] > limit or Y[i] < -limit:
Y = np.remove(Y, i)
X = np.remove(X, i)
else:
i+=1
# move channel axis
X = X.transpose(0, 3, 1, 2)
# subsample
totalSamples = X.shape[0]
num_train = int(totalSamples * (num_training_percentage / 100))
num_validation = int(totalSamples * (num_validation_percentage / 100))
mask = range(num_train)
X_train = X[mask]
y_train = Y[mask]
mask = range(num_train, num_train + num_validation)
X_val = X[mask]
y_val = Y[mask]
# all data: (34.5k images) 1697464320 bytes
print("Number of examples %d/%d/%d/%d. Size in bytes %d" % (X.shape[0],X.shape[1],X.shape[2],X.shape[3], (X.size * X.itemsize)))
return DrivingData(X_train, y_train), DrivingData(X_val, y_val)
#getDrivingData("race1515861815.769681.txt")
# USAGE
# train_data, val_data = getDrivingData('race1515861815.769681.txt')
# train_loader = torch.utils.data.DataLoader(train_data, batch_size=10, shuffle=True, num_workers=0)
#
# for i, (data, target) in enumerate(train_loader):
# print(target[0])