forked from nabsabraham/focal-tversky-unet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnewmodels.py
298 lines (223 loc) · 13.8 KB
/
newmodels.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
# -*- coding: utf-8 -*-
"""
Created on Tue Oct 9 18:54:57 2018
@author: Nabila Abraham
"""
import cv2
import time
import os
import h5py
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose
from keras.layers import Activation, add, multiply, Lambda
from keras.layers import AveragePooling2D, average, UpSampling2D, Dropout
from keras.optimizers import Adam, SGD, RMSprop
from keras.initializers import glorot_normal, random_normal, random_uniform
from keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping
from keras import backend as K
from keras.layers.normalization import BatchNormalization
from keras.applications import VGG19, densenet
from keras.models import load_model
import numpy as np
import tensorflow as tf
import losses
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc, precision_recall_curve # roc curve tools
from sklearn.model_selection import train_test_split
K.set_image_data_format('channels_last') # TF dimension ordering in this code
kinit = 'glorot_normal'
def unet(opt,input_size, lossfxn):
inputs = Input(shape=input_size)
conv1 = UnetConv2D(inputs, 32, is_batchnorm=True, name='conv1')
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = UnetConv2D(pool1, 64, is_batchnorm=True, name='conv2')
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = UnetConv2D(pool2, 128, is_batchnorm=True, name='conv3')
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = UnetConv2D(pool3, 256, is_batchnorm=True, name='conv4')
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Conv2D(512, (3, 3), activation='relu', kernel_initializer=kinit, padding='same')(pool4)
conv5 = Conv2D(512, (3, 3), activation='relu', kernel_initializer=kinit, padding='same')(conv5)
up6 = concatenate([Conv2DTranspose(256, (2, 2), strides=(2, 2), kernel_initializer=kinit, padding='same')(conv5), conv4], axis=3)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(up6)
conv6 = Conv2D(256, (3, 3), activation='relu', padding='same')(conv6)
up7 = concatenate([Conv2DTranspose(128, (2, 2), strides=(2, 2), padding='same')(conv6), conv3], axis=3)
conv7 = Conv2D(128, (3, 3), activation='relu', kernel_initializer=kinit, padding='same')(up7)
conv7 = Conv2D(128, (3, 3), activation='relu', kernel_initializer=kinit, padding='same')(conv7)
up8 = concatenate([Conv2DTranspose(64, (2, 2), strides=(2, 2), kernel_initializer=kinit, padding='same')(conv7), conv2], axis=3)
conv8 = Conv2D(64, (3, 3), activation='relu', kernel_initializer=kinit, padding='same')(up8)
up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), kernel_initializer=kinit, padding='same')(conv8), conv1], axis=3)
conv9 = Conv2D(32, (3, 3), activation='relu', kernel_initializer=kinit, padding='same')(up9)
conv9 = Conv2D(32, (3, 3), activation='relu', kernel_initializer=kinit, padding='same')(conv9)
conv10 = Conv2D(1, (1, 1), activation='sigmoid', name='final')(conv9)
model = Model(inputs=[inputs], outputs=[conv10])
model.compile(optimizer=opt, loss=lossfxn, metrics=[losses.dsc,losses.tp,losses.tn])
return model
def expend_as(tensor, rep,name):
my_repeat = Lambda(lambda x, repnum: K.repeat_elements(x, repnum, axis=3), arguments={'repnum': rep}, name='psi_up'+name)(tensor)
return my_repeat
def AttnGatingBlock(x, g, inter_shape, name):
''' take g which is the spatially smaller signal, do a conv to get the same
number of feature channels as x (bigger spatially)
do a conv on x to also get same geature channels (theta_x)
then, upsample g to be same size as x
add x and g (concat_xg)
relu, 1x1 conv, then sigmoid then upsample the final - this gives us attn coefficients'''
shape_x = K.int_shape(x) # 32
shape_g = K.int_shape(g) # 16
theta_x = Conv2D(inter_shape, (2, 2), strides=(2, 2), padding='same', name='xl'+name)(x) # 16
shape_theta_x = K.int_shape(theta_x)
phi_g = Conv2D(inter_shape, (1, 1), padding='same')(g)
upsample_g = Conv2DTranspose(inter_shape, (3, 3),strides=(shape_theta_x[1] // shape_g[1], shape_theta_x[2] // shape_g[2]),padding='same', name='g_up'+name)(phi_g) # 16
concat_xg = add([upsample_g, theta_x])
act_xg = Activation('relu')(concat_xg)
psi = Conv2D(1, (1, 1), padding='same', name='psi'+name)(act_xg)
sigmoid_xg = Activation('sigmoid')(psi)
shape_sigmoid = K.int_shape(sigmoid_xg)
upsample_psi = UpSampling2D(size=(shape_x[1] // shape_sigmoid[1], shape_x[2] // shape_sigmoid[2]))(sigmoid_xg) # 32
upsample_psi = expend_as(upsample_psi, shape_x[3], name)
y = multiply([upsample_psi, x], name='q_attn'+name)
result = Conv2D(shape_x[3], (1, 1), padding='same',name='q_attn_conv'+name)(y)
result_bn = BatchNormalization(name='q_attn_bn'+name)(result)
return result_bn
def UnetConv2D(input, outdim, is_batchnorm, name):
x = Conv2D(outdim, (3, 3), strides=(1, 1), kernel_initializer=kinit, padding="same", name=name+'_1')(input)
if is_batchnorm:
x =BatchNormalization(name=name + '_1_bn')(x)
x = Activation('relu',name=name + '_1_act')(x)
x = Conv2D(outdim, (3, 3), strides=(1, 1), kernel_initializer=kinit, padding="same", name=name+'_2')(x)
if is_batchnorm:
x = BatchNormalization(name=name + '_2_bn')(x)
x = Activation('relu', name=name + '_2_act')(x)
return x
def UnetGatingSignal(input, is_batchnorm, name):
''' this is simply 1x1 convolution, bn, activation '''
shape = K.int_shape(input)
x = Conv2D(shape[3] * 1, (1, 1), strides=(1, 1), padding="same", kernel_initializer=kinit, name=name + '_conv')(input)
if is_batchnorm:
x = BatchNormalization(name=name + '_bn')(x)
x = Activation('relu', name = name + '_act')(x)
return x
# plain old attention gates in u-net, NO multi-input, NO deep supervision
def attn_unet(opt,input_size, lossfxn):
inputs = Input(shape=input_size)
conv1 = UnetConv2D(inputs, 32, is_batchnorm=True, name='conv1')
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = UnetConv2D(pool1, 32, is_batchnorm=True, name='conv2')
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = UnetConv2D(pool2, 64, is_batchnorm=True, name='conv3')
#conv3 = Dropout(0.2,name='drop_conv3')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = UnetConv2D(pool3, 64, is_batchnorm=True, name='conv4')
#conv4 = Dropout(0.2, name='drop_conv4')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
center = UnetConv2D(pool4, 128, is_batchnorm=True, name='center')
g1 = UnetGatingSignal(center, is_batchnorm=True, name='g1')
attn1 = AttnGatingBlock(conv4, g1, 128, '_1')
up1 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(center), attn1], name='up1')
g2 = UnetGatingSignal(up1, is_batchnorm=True, name='g2')
attn2 = AttnGatingBlock(conv3, g2, 64, '_2')
up2 = concatenate([Conv2DTranspose(64, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up1), attn2], name='up2')
g3 = UnetGatingSignal(up1, is_batchnorm=True, name='g3')
attn3 = AttnGatingBlock(conv2, g3, 32, '_3')
up3 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up2), attn3], name='up3')
up4 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up3), conv1], name='up4')
out = Conv2D(1, (1, 1), activation='sigmoid', kernel_initializer=kinit, name='final')(up4)
model = Model(inputs=[inputs], outputs=[out])
model.compile(optimizer=opt, loss=lossfxn, metrics=[losses.dsc,losses.tp,losses.tn])
return model
#regular attention unet with deep supervision - exactly from paper (my intepretation)
def attn_reg_ds(opt,input_size, lossfxn):
img_input = Input(shape=input_size, name='input_scale1')
conv1 = UnetConv2D(img_input, 32, is_batchnorm=True, name='conv1')
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = UnetConv2D(pool1, 64, is_batchnorm=True, name='conv2')
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = UnetConv2D(pool2, 128, is_batchnorm=True, name='conv3')
#conv3 = Dropout(0.2,name='drop_conv3')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = UnetConv2D(pool3, 64, is_batchnorm=True, name='conv4')
#conv4 = Dropout(0.2, name='drop_conv4')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
center = UnetConv2D(pool4, 512, is_batchnorm=True, name='center')
g1 = UnetGatingSignal(center, is_batchnorm=True, name='g1')
attn1 = AttnGatingBlock(conv4, g1, 128, '_1')
up1 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(center), attn1], name='up1')
g2 = UnetGatingSignal(up1, is_batchnorm=True, name='g2')
attn2 = AttnGatingBlock(conv3, g2, 64, '_2')
up2 = concatenate([Conv2DTranspose(64, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up1), attn2], name='up2')
g3 = UnetGatingSignal(up1, is_batchnorm=True, name='g3')
attn3 = AttnGatingBlock(conv2, g3, 32, '_3')
up3 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up2), attn3], name='up3')
up4 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up3), conv1], name='up4')
conv6 = UnetConv2D(up1, 256, is_batchnorm=True, name='conv6')
conv7 = UnetConv2D(up2, 128, is_batchnorm=True, name='conv7')
conv8 = UnetConv2D(up3, 64, is_batchnorm=True, name='conv8')
conv9 = UnetConv2D(up4, 32, is_batchnorm=True, name='conv9')
out6 = Conv2D(1, (1, 1), activation='sigmoid', name='pred1')(conv6)
out7 = Conv2D(1, (1, 1), activation='sigmoid', name='pred2')(conv7)
out8 = Conv2D(1, (1, 1), activation='sigmoid', name='pred3')(conv8)
out9 = Conv2D(1, (1, 1), activation='sigmoid', name='final')(conv9)
model = Model(inputs=[img_input], outputs=[out6, out7, out8, out9])
loss = {'pred1':lossfxn,
'pred2':lossfxn,
'pred3':lossfxn,
'final': lossfxn}
loss_weights = {'pred1':1,
'pred2':1,
'pred3':1,
'final':1}
model.compile(optimizer=opt, loss=loss, loss_weights=loss_weights,
metrics=[losses.dsc])
return model
#model proposed in my paper - improved attention u-net with multi-scale input pyramid and deep supervision
def attn_reg(opt,input_size, lossfxn):
img_input = Input(shape=input_size, name='input_scale1')
scale_img_2 = AveragePooling2D(pool_size=(2, 2), name='input_scale2')(img_input)
scale_img_3 = AveragePooling2D(pool_size=(2, 2), name='input_scale3')(scale_img_2)
scale_img_4 = AveragePooling2D(pool_size=(2, 2), name='input_scale4')(scale_img_3)
conv1 = UnetConv2D(img_input, 32, is_batchnorm=True, name='conv1')
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
input2 = Conv2D(64, (3, 3), padding='same', activation='relu', name='conv_scale2')(scale_img_2)
input2 = concatenate([input2, pool1], axis=3)
conv2 = UnetConv2D(input2, 64, is_batchnorm=True, name='conv2')
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
input3 = Conv2D(128, (3, 3), padding='same', activation='relu', name='conv_scale3')(scale_img_3)
input3 = concatenate([input3, pool2], axis=3)
conv3 = UnetConv2D(input3, 128, is_batchnorm=True, name='conv3')
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
input4 = Conv2D(256, (3, 3), padding='same', activation='relu', name='conv_scale4')(scale_img_4)
input4 = concatenate([input4, pool3], axis=3)
conv4 = UnetConv2D(input4, 64, is_batchnorm=True, name='conv4')
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
center = UnetConv2D(pool4, 512, is_batchnorm=True, name='center')
g1 = UnetGatingSignal(center, is_batchnorm=True, name='g1')
attn1 = AttnGatingBlock(conv4, g1, 128, '_1')
up1 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(center), attn1], name='up1')
g2 = UnetGatingSignal(up1, is_batchnorm=True, name='g2')
attn2 = AttnGatingBlock(conv3, g2, 64, '_2')
up2 = concatenate([Conv2DTranspose(64, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up1), attn2], name='up2')
g3 = UnetGatingSignal(up1, is_batchnorm=True, name='g3')
attn3 = AttnGatingBlock(conv2, g3, 32, '_3')
up3 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up2), attn3], name='up3')
up4 = concatenate([Conv2DTranspose(32, (3,3), strides=(2,2), padding='same', activation='relu', kernel_initializer=kinit)(up3), conv1], name='up4')
conv6 = UnetConv2D(up1, 256, is_batchnorm=True, name='conv6')
conv7 = UnetConv2D(up2, 128, is_batchnorm=True, name='conv7')
conv8 = UnetConv2D(up3, 64, is_batchnorm=True, name='conv8')
conv9 = UnetConv2D(up4, 32, is_batchnorm=True, name='conv9')
out6 = Conv2D(1, (1, 1), activation='sigmoid', name='pred1')(conv6)
out7 = Conv2D(1, (1, 1), activation='sigmoid', name='pred2')(conv7)
out8 = Conv2D(1, (1, 1), activation='sigmoid', name='pred3')(conv8)
out9 = Conv2D(1, (1, 1), activation='sigmoid', name='final')(conv9)
model = Model(inputs=[img_input], outputs=[out6, out7, out8, out9])
loss = {'pred1':lossfxn,
'pred2':lossfxn,
'pred3':lossfxn,
'final': losses.tversky_loss}
loss_weights = {'pred1':1,
'pred2':1,
'pred3':1,
'final':1}
model.compile(optimizer=opt, loss=loss, loss_weights=loss_weights,
metrics=[losses.dsc])
return model