-
Notifications
You must be signed in to change notification settings - Fork 2
/
submitit_pretrain.py
147 lines (115 loc) · 5.03 KB
/
submitit_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# A script to run multinode training with submitit.
# --------------------------------------------------------
import argparse
import os
import uuid
from pathlib import Path
import submitit
import importlib
def get_args_parser():
# trainer_parser = trainer.get_args_parser()
parser = argparse.ArgumentParser("Submitit for evaluation")
parser.add_argument("--ngpus", default=8, type=int, help="Number of gpus to request on each node")
parser.add_argument("--nodes", default=1, type=int, help="Number of nodes to request")
parser.add_argument("-t", "--timeout", default=1440, type=int, help="Duration of the job")
parser.add_argument("--module", default='main_pretrain_ffcv', type=str)
parser.add_argument("--mem", default=400, type=float, help="Memory to request")
parser.add_argument("-p", "--partition", default="big", type=str, help="Partition where to submit")
parser.add_argument('--comment', default="", type=str, help="Comment to pass to scheduler")
parser.add_argument( "--job_dir", default='',type=str,)
return parser
def get_shared_folder(root) -> Path:
root = root.replace("%j", "shared")
p = Path(root)
os.makedirs(str(p), exist_ok=True)
if Path(root).is_dir():
return p
raise RuntimeError("No shared folder available")
def get_init_file(root):
# Init file must not exist, but it's parent dir must exist.
os.makedirs(str(get_shared_folder(root)), exist_ok=True)
init_file = get_shared_folder(root) / f"{uuid.uuid4().hex}_init"
if init_file.exists():
os.remove(str(init_file))
return init_file
class Trainer(object):
def __init__(self, args, module_params):
self.args = args
self.module_params = module_params
self.module = importlib.import_module(args.module)
## reassing args
parser = self.module.get_args_parser()
module_args = parser.parse_args(module_params)
module_args.output_dir = args.job_dir
module_args.dist_url = args.dist_url
self.module_args = module_args
def __call__(self):
self._setup_gpu_args()
self.module.main(self.module_args)
def checkpoint(self):
print("Checkpointing")
import os
import submitit
job_env = submitit.JobEnvironment()
print("Requeuing ", self.args, self.module_args)
output_dir = self.module_args.output_dir
checkpoint_file = os.path.join(output_dir, "checkpoint.pth")
self.args.dist_url = get_init_file(output_dir).as_uri()
empty_trainer = type(self)(self.args,self.module_params)
if os.path.exists(checkpoint_file):
empty_trainer.module_args.resume = checkpoint_file
print("Requeueing with ", empty_trainer.module_args)
return submitit.helpers.DelayedSubmission(empty_trainer)
def _setup_gpu_args(self):
import submitit
module_args = self.module_args
job_env = submitit.JobEnvironment()
output_dir = str(self.args.job_dir).replace("%j", str(job_env.job_id))
module_args.output_dir = output_dir
module_args.gpu = job_env.local_rank
module_args.rank = job_env.global_rank
module_args.world_size = job_env.num_tasks
module_args.comment = f"Job {job_env.job_id} on {job_env.num_tasks} GPUs"
print("Setting up GPU args", module_args)
print(f"Process group: {job_env.num_tasks} tasks, rank: {job_env.global_rank}")
def main():
parser = get_args_parser()
args, module_params = parser.parse_known_args()
print("args:", args)
print("module_params:", module_params)
if args.job_dir=='':
args.job_dir = f"outputs/experiments/%j"
args.job_dir = os.path.abspath(args.job_dir)
# Note that the folder will depend on the job_id, to easily track experiments
executor = submitit.AutoExecutor(folder=args.job_dir, slurm_max_num_timeout=30)
num_gpus_per_node = args.ngpus
nodes = args.nodes
timeout_min = args.timeout
partition = args.partition
kwargs = {}
if args.comment:
kwargs['slurm_comment'] = args.comment
executor.update_parameters(
mem_gb=args.mem,
gpus_per_node=num_gpus_per_node,
tasks_per_node=num_gpus_per_node, # one task per GPU
cpus_per_task=10,
nodes=nodes,
timeout_min=timeout_min, # max is 60 * 72
# Below are cluster dependent parameters
slurm_partition=partition,
slurm_signal_delay_s=120,
**kwargs
)
executor.update_parameters(name="pretrain")
args.dist_url = get_init_file(args.job_dir).as_uri()
trainer = Trainer(args, module_params)
job = executor.submit(trainer)
print("Submitted job_id:", job.job_id)
if __name__ == "__main__":
main()