-
Notifications
You must be signed in to change notification settings - Fork 26
/
LCMatch.h
235 lines (195 loc) · 6.07 KB
/
LCMatch.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
/*
* (c) Yury Kuchura
*
* This code can be used on terms of WTFPL Version 2 (http://www.wtfpl.net/).
*
* Heavily messed about with by OneOfEleven July 2020
*/
#ifndef LCMatchH
#define LCMatchH
#include <float.h>
//#include <math.h>
#include <Math.hpp>
// L-Network solution structure
typedef struct
{
float xps; // Reactance parallel to source (can be NAN if not applicable)
float xs; // Serial reactance (can be 0.0 if not applicable)
float xpl; // Reactance parallel to load (can be NAN if not applicable)
} t_lc_match;
class LCMatch
{
public:
static void __fastcall quadratic_equation(float a, float b, float c, float *result)
{
const float d = (b * b) - (4 * a * c);
if (d < 0)
{
result[0] = 0.0f;
result[1] = 0.0f;
}
else
{
const float sd = sqrtf(d);
const float a2 = 2.0f * a;
result[0] = (-b + sd) / a2;
result[1] = (-b - sd) / a2;
}
}
// Calculate two solutions for ZL where (R + X * X / R) > R0
static void __fastcall calc_hi(float R0, float RL, float XL, t_lc_match *result)
{
float xs[2];
float xp[2];
const float RLS = RL * RL;
const float a = R0 - RL;
const float b = 2 * XL * R0;
const float c = R0 * ((XL * XL) + (RL * RL));
quadratic_equation(a, b, c, xp);
// found two impedances parallel to load
//
// now calculate serial impedances
const float RL1 = -XL * xp[0];
const float XL1 = RL * xp[0];
const float XL2 = XL + xp[0];
xs[0] = -((RL * XL1) - (RL1 * XL2)) / (RLS + (XL2 * XL2));
const float RL3 = -XL * xp[1];
const float XL3 = RL * xp[1];
const float XL4 = XL + xp[1];
xs[1] = -((RL * XL3) - (RL3 * XL4)) / (RLS + (XL4 * XL4));
result[0].xs = xs[0];
result[0].xps = NaN;
result[0].xpl = xp[0];
result[1].xs = xs[1];
result[1].xps = NaN;
result[1].xpl = xp[1];
}
// Calculate two solutions for ZL where R < R0
static void __fastcall calc_lo(float R0, float RL, float XL, t_lc_match *result)
{
float xs[2];
float xp[2];
// Calculate Xs
const float a = 1.0f;
const float b = 2.0f * XL;
const float c = (RL * RL) + (XL * XL) - (R0 * RL);
quadratic_equation(a, b, c, xs);
// got two serial impedances that change ZL to the Y.real = 1/R0
//
// now calculate impedances parallel to source
const float XL1 = XL + xs[0];
const float RL3 = RL * R0;
const float XL3 = XL1 * R0;
const float RL5 = RL - R0;
xp[0] = ((RL5 * XL3) - (RL3 * XL1)) / ((RL5 * RL5) + (XL1 * XL1));
const float XL2 = XL + xs[1];
const float RL4 = RL * R0;
const float XL4 = XL2 * R0;
const float RL6 = RL - R0;
xp[1] = ((RL6 * XL4) - (RL4 * XL2)) / ((RL6 * RL6) + (XL2 * XL2));
result[0].xs = xs[0];
result[0].xps = xp[0];
result[0].xpl = NaN;
result[1].xs = xs[1];
result[1].xps = xp[1];
result[1].xpl = NaN;
}
static float __fastcall _nonz(float f)
{
return (0.0f == f || -0.0f == f) ? 1e-30f : f;
}
static float __fastcall dsp_calcVSWR(float RL, float XL, float ref_impedance)
{
const float X2 = XL * XL;
const float R = (RL > 0.0f) ? RL : 0.0f;
const float n = R - ref_impedance;
const float p = R + ref_impedance;
float ro = sqrtf(((n * n) + X2) / _nonz((p * p) + X2));
if (ro > 0.9999f)
ro = 0.9999f;
const float vswr = (1.0f + ro) / (1.0f - ro);
return vswr;
}
static int __fastcall calc(complexf ZL, t_lc_match *result, float ref_impedance)
{
const float R0 = ref_impedance;
// const complexf ZL = calcImpedance(c, ref_impedance);
if (ZL.real() <= 0.5f)
return -1;
const float vswr = dsp_calcVSWR(ZL.real(), ZL.imag(), ref_impedance);
if (vswr <= 1.05f)
return 0; // low VSWR .. no need for any matching
const float q_factor = ZL.imag() / ZL.real();
if (q_factor > 100.0f)
return -1; // Q-factor too high
if (ZL.real() > (R0 / 1.05f) && ZL.real() < (R0 * 1.05f))
{ // only one solution is enough: just a serial reactance
// this gives SWR < 1.1 if R is within the range 0.91 .. 1.1 of R0
result[0].xpl = NaN;
result[0].xps = NaN;
result[0].xs = -ZL.imag();
return 1;
}
if (ZL.real() >= R0)
{ // two Hi-Z solutions
calc_hi(R0, ZL.real(), ZL.imag(), result);
return 2;
}
// compute Lo-Z solutions
calc_lo(R0, ZL.real(), ZL.imag(), result);
if ((ZL.real() + (ZL.imag() * q_factor)) <= R0)
return 2;
// two more Hi-Z solutions exist
calc_hi(R0, ZL.real(), ZL.imag(), &result[2]);
return 4;
}
static void __fastcall x_str(double Hz, float X, char *str)
{
if (IsNan(X))
{
//strcpy(str, " --- ");
strcpy(str, " ");
return;
}
if (0.0f == X || -0.0f == X)
{ // catch divide-by-zero
strcpy(str, " 0 ");
return;
}
const double phi = 2 * M_PI * Hz;
if (X < 0.0f)
{
const float c = 1.0f / (phi * -X);
if (fabsf(c) >= 1e0f) sprintf(str, "%6.2f F ", c * 1e0f);
else
if (fabsf(c) >= 1e-3f) sprintf(str, "%6.2f mF", c * 1e3f);
else
if (fabsf(c) >= 1e-6f) sprintf(str, "%6.2f uF", c * 1e6f);
else
if (fabsf(c) >= 1e-9f) sprintf(str, "%6.2f nF", c * 1e9f);
else sprintf(str, "%6.2f pF", c * 1e12f);
// if (fabsf(c) >= 1e-12f) sprintf(str, "%6.2f pF", c * 1e12f);
// else sprintf(str, "%6.2f fF", c * 1e15f);
}
else
if (phi != 0)
{
const float l = X / phi;
if (fabsf(l) >= 1e0f) sprintf(str, "%6.2f H ", l * 1e0f);
else
if (fabsf(l) >= 1e-3f) sprintf(str, "%6.2f mH", l * 1e3f);
else
if (fabsf(l) >= 1e-6f) sprintf(str, "%6.2f uH", l * 1e6f);
else sprintf(str, "%6.2f nH", l * 1e9f);
// if (fabsf(l) >= 1e-9f) sprintf(str, "%6.2f nH", l * 1e9f);
// else sprintf(str, "%6.2f pH", l * 1e12f);
}
else
{ // catch divide-by-zero
strcpy(str, " 0 ");
return;
}
}
};
#endif