diff --git a/inst/rmarkdown/templates/transmissibility/skeleton/skeleton.Rmd b/inst/rmarkdown/templates/transmissibility/skeleton/skeleton.Rmd index a2a28b9a..3c53a7d1 100644 --- a/inst/rmarkdown/templates/transmissibility/skeleton/skeleton.Rmd +++ b/inst/rmarkdown/templates/transmissibility/skeleton/skeleton.Rmd @@ -203,11 +203,11 @@ steps of the report include: * estimating the growth rate and doubling time from epidemic curves * estimating the instantaneous reproduction number from epidemic curves -```{r} +```{r diplay-pipeline} knitr::include_graphics("transmissibility_pipeline.svg") ``` -```{r} +```{r load-packages} #The following code loads required packages; missing packages will be installed #automatically, but will require a working internet connection for the #installation to be successful. @@ -226,7 +226,7 @@ library(epiparameter) library(incidence2) ``` -```{r} +```{r define-theme} custom_grey <- "#505B5B" green_grey <- "#5E7E80" pale_green <- "#B2D1CC" @@ -252,7 +252,7 @@ apt install libsodium-dev cmake ## Importing the data -```{r} +```{r define-data-path} # To adapt this report to another dataset, change the name of # the file in the `data_file` parameter at the top of this document. # Supported file types include .xlsx, .csv, and many others, please visit @@ -261,7 +261,7 @@ apt install libsodium-dev cmake data_path <- params$data_file ``` -```{r} +```{r import-data} # This code imports the input dataset from the data path specified by the user # (params$data_path) dat_raw <- data_path %>% @@ -276,7 +276,7 @@ dat_raw <- data_path %>% Data used in this report _are available to the reader at https://doi.org/10.1038/s41597-020-0448-0 _, and contains the following variables: -```{r} +```{r preview-data} # This is what the data used in this report, `dat_raw`, looks like: head(dat_raw) %>% kbl() %>% @@ -285,7 +285,7 @@ head(dat_raw) %>% ## Identifying key data -```{r} +```{r define-key-variables} # This code identifies key variables for analysis in the input dataset and, # when working with a linelist, uses the package {linelist} to tag columns in # the dataset that correspond to these key variables. @@ -304,7 +304,8 @@ dat <- dat_raw %>% location = group_var ) ``` -```{r, include=FALSE} + +```{r compute-date-range, include=FALSE} min_date <- min(dat_raw[[date_var]]) max_date <- max(dat_raw[[date_var]]) ``` @@ -323,7 +324,7 @@ Key variables included in this dataset that are used in this report's analyses i This section creates epidemic curves ("_epicurves_"), with and without stratification by `r group_var`. -```{r} +```{r convert-incidence} # This code converts daily incidence into weekly incidence using {incidence2} dat_i <- dat_raw %>% incidence("date", @@ -337,7 +338,7 @@ n_groups <- dplyr::n_distinct(get_groups(dat_i)[[1]]) small_counts <- max(get_count_value(dat_i)) < 20 ``` -```{r} +```{r display-epicurves} # Plot to visualise an epicurve with total cases of disease over time dat_i %>% plot(fill = group_var, angle = 45, colour_palette = muted) + @@ -345,7 +346,7 @@ dat_i %>% title = "Weekly incidence of disease cases", x = "", y = "Incidence") ``` -```{r fig.height = 5 / 3 * n_groups} +```{r display-stratified-epicurves, fig.height = 5 / 3 * n_groups} # Plot to generate epicurves stratified by group_var dat_i %>% plot(alpha = 1, nrow = n_groups) + @@ -356,7 +357,7 @@ dat_i %>% This section shows the total number of cases per `r group_var`, as a bar chart and as a table. -```{r } +```{r display-total-cases} # This code selects relevant variables in the weekly incidence dataset (dat_i), # group the incidence by variable specified by "group_var", and generate a plot # that shows the total number of cases, stratified by "group_var". @@ -403,7 +404,7 @@ In this report, the mean and standard deviation of the $si$ have been `r ifelse( ## Results -```{r, eval = params$use_epiparameter_database} +```{r define-si-epiparameter, eval = params$use_epiparameter_database} # If params$use_epiparameter_database=TRUE, this code accesses the # {epiparameter} package library of epidemiological parameters to obtain a si # distribution for params$disease_name, and creates an `epidist` object. @@ -420,7 +421,7 @@ si_mean <- si_params["mean"] si_sd <- si_params["sd"] ``` -```{r, eval = !params$use_epiparameter_database} +```{r define-si, eval = !params$use_epiparameter_database} # If params$use_epiparameter_database=FALSE, this code takes the mean and sd for # the si provided by the user and creates an epidist object si_mean <- params$si_mean @@ -438,14 +439,14 @@ si_epidist <- epidist( ) ``` -```{r} +```{r discretise-si} # This code ensures that the si distribution is discretised, and formats the # si for plotting si <- discretise(si_epidist) si_x <- seq(quantile(si, 0.01), to = quantile(si, 0.999), by = 1L) ``` -```{r} +```{r display-si} # Plot to visualise the si distribution for the disease of interest # (params$disease_name) ggplot( @@ -466,7 +467,7 @@ ggplot( # Growth rate ($r$) and reproduction number ($R$) -```{r} +```{r truncate-incidence} # This code creates a dataset with daily incidence data, which is needed for # Rt estimation dat_i_day <- dat_raw %>% @@ -478,10 +479,10 @@ dat_i_day <- dat_raw %>% keep_first(n_distinct(.$date_index) - params$incomplete_days) ``` -```{r, child=paste0("rmdchunks/", params$rt_estimator, ".Rmd")} +```{r estimate-rt, child=paste0("rmdchunks/", params$rt_estimator, ".Rmd")} ``` -```{r} +```{r cite-packages} cite_packages(output = "paragraph", out.dir = ".", pkgs = "Session") ```