Skip to content

Commit 64c42be

Browse files
committed
run pre-commit
1 parent c88eaf6 commit 64c42be

File tree

3 files changed

+12
-4
lines changed

3 files changed

+12
-4
lines changed

.markdownlint.yaml

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -23,3 +23,9 @@ MD037: false
2323
MD049: false
2424

2525
MD046: false
26+
27+
MD052: false
28+
29+
MD053: false
30+
31+
MD045: false

dl/energy-based-models/ebm.diffusion.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ Many deep learning models utilize the concept of latent space, e.g., $\mathbf z$
55
which is usually a compression of the real data space, e.g., $\mathbf x$, to enable easier computations for our task.
66

77
However, such models usually require the computation of an intractable marginalization of the joint distribution $p(\mathbf x, \mathbf z)$ over the latent space[@Luo2022-hz]. To make such computations tractable, we have to apply approximations or theoretical assumptions.
8-
Diffusion models in deep learning establish the connection between the real data space $\mathbf x$ and the latent space $\mathbf z$ assuming invertible [diffusion processes](https://en.wikipedia.org/wiki/Diffusion_process) [@Sohl-Dickstein2015-th][@Ho2020-er].
8+
Diffusion models in deep learning establish the connection between the real data space $\mathbf x$ and the latent space $\mathbf z$ assuming invertible [diffusion processes](https://en.wikipedia.org/wiki/Diffusion_process) [@Sohl-Dickstein2015-th] [@Ho2020-er].
99

1010
## Objective
1111

dl/notebooks/transformer_history.py

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -72,9 +72,11 @@
7272
i["publicationDate"], "%Y-%m-%dT%H:%M:%SZ"
7373
).toordinal()
7474
),
75-
np.log(1 + i.get("forwardEdgeCount", 0)) * (1 + rng.random() * 0.2)
76-
if i.get("forwardEdgeCount", 0) > 50
77-
else np.log(1 + i.get("forwardEdgeCount", 0)) + rng.random() * 3,
75+
(
76+
np.log(1 + i.get("forwardEdgeCount", 0)) * (1 + rng.random() * 0.2)
77+
if i.get("forwardEdgeCount", 0) > 50
78+
else np.log(1 + i.get("forwardEdgeCount", 0)) + rng.random() * 3
79+
),
7880
]
7981
)
8082

0 commit comments

Comments
 (0)