-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
113 lines (90 loc) · 3.72 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
import torchvision
import torchvision.transforms as transforms
import numpy as np
from components.data_ingestion import create_dataset_directory, files_to_dataframe
from transformers import BertTokenizer
class MSCTDDataset(torch.utils.data.Dataset):
"""
Uses dataframe to preprocess and serve
dictionary of multimodal tensors for model input.
"""
def __init__(self, root = './data', dataset_name = 'train', img_transform=None,
text_transform=None, max_length=15 ,random_state=42):
"""
Args:
text_add : .txt of chats.
sentiment_add : .txt of emotions for each line.
index_add : .txt of related images for each line.
img_dir : path to iamges folder
"""
self.data_pathes = create_dataset_directory(root, dataset_name)
self.dataframe = files_to_dataframe(self.data_pathes[0], self.data_pathes[1], self.data_pathes[2])
self.img_dir = self.data_pathes[3]
self.img_transform = img_transform
self.text_transform = text_transform
self.max_length = max_length
def __len__(self):
return len(self.dataframe)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
text = self.dataframe.loc[idx, 'text']
label = self.dataframe.loc[idx, 'label']
label = np.array(label)
img_path = f'{self.img_dir}/{idx}.jpg'
img = torchvision.io.read_image(path=img_path)
if self.img_transform:
img = self.img_transform(img)
if self.text_transform:
tokenized_text = self.text_transform(text, padding='max_length',
max_length=self.max_length, truncation=True, return_tensors="pt")
sample = {
'text': tokenized_text,
'img': img,
'label': label
}
return sample
class MSCTDDataModule(pl.LightningDataModule):
def __init__(self, data_dir, batch_size, num_workers):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
def setup(self, stage):
img_transform = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor()
])
text_transform = BertTokenizer.from_pretrained('bert-base-cased')
self.train_dataset = MSCTDDataset(root='./data1', dataset_name='train',
img_transform=img_transform, text_transform=text_transform)
self.dev_dataset = MSCTDDataset(root='./data1', dataset_name='dev',
img_transform=img_transform, text_transform=text_transform)
self.test_dataset = MSCTDDataset(root='./data1', dataset_name='test',
img_transform=img_transform, text_transform=text_transform)
def train_dataloader(self):
return DataLoader(
self.train_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=True,
)
def val_dataloader(self):
return DataLoader(
self.dev_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)
def test_dataloader(self):
return DataLoader(
self.test_dataset,
batch_size=self.batch_size,
num_workers=self.num_workers,
shuffle=False,
)